共查询到20条相似文献,搜索用时 10 毫秒
1.
A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples. 相似文献
2.
A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL −1 CRP and the limit of detection was 0.05 ng mL −1 CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production. 相似文献
3.
An electrochemical method for the simultaneous detection of two different DNA sequences from PAT and FMV 35S gene sequence using CdS and PbS quantum dots (QDs) as labels was described. The QDs were readily functionalized with oligonucleotides as electrochemical DNA probes and selectively hybridized to the complementary sequences immobilized on the microplate. The QDs anchored on the hybrids were dissolved in the solution by the oxidation of HNO3 and further detected by a sensitive differential pulse anodic stripping voltammetric method (DPASV). The DPASV signals of the oxidation of Cd^2+ and Pb^2+ ions present in the solution were different and reflected the identity of corresponding ssDNA targets sequences. 相似文献
4.
作为一种新型荧光纳米材料,量子点具有十分优异的光学特性,是分析化学、生物科学、医学等领域研究的热点标记材料.分子印迹聚合物是能够进行特异性识别和选择性吸附的"仿生"材料,它易于制备且具有较好的重现性和稳定性,因而分子印迹技术已成为具有广阔应用前景的识别技术.量子点基分子印迹荧光传感器结合了量子点和分子印迹技术的优势,由... 相似文献
5.
We describe here a novel approach for detection of cancer markers using quantum dot protein microarrays. Both relatively new technologies; quantum dots and protein microarrays, offer very unique features that together allow detection of cancer markers in biological specimens (serum, plasma, body fluids) at pg/ml concentration. Quantum dots offer remarkable photostability and brightness. They do not exhibit photobleaching common to organic fluorophores. Moreover, the high emission amplitude for QDs results in a marked improvement in the signal to noise ratio of the final image. Protein microarrays allow highly parallel quantitation of specific proteins in a rapid, low-cost and low sample volume format. Furthermore the multiplexed assay enables detection of many proteins at once in one sample, making it a powerful tool for biomarker analysis and early cancer diagnostics. In a series of multiplexing experiments we investigated ability of the platform to detect six different cytokines in protein solution. We were able to detect TNF-, IL-8, IL-6, MIP-1β, IL-13 and IL-1β down to picomolar concentration, demonstrating high sensitivity of the investigated detection system. We have also constructed and investigated two different models of quantum dot probes. One by conjugation of nanocrystals to antibody specific to the selected marker—IL-10, and the second by use of streptavidin coated quantum dots and biotinylated detector antibody. Comparison of those two models showed better performance of streptavidin QD–biotinylated detector antibody model. Data quantitated using custom designed computer program (CDAS) show that proposed methodology allows monitoring of changes in biomarker concentration in physiological range. 相似文献
6.
In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10 mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant ( Km =2.0745 mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that ( Km =0.549 mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that ( Km =0.1698 mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications. 相似文献
7.
Acetamidomalondihydroxamate (K 2AcAMDH) and its manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV–VIS, IR and magnetic susceptibility. The p K a1 and p K a2 values of the dihydroxamic acid in aqueous solution were found to be 8.0?±?0.1 and 9.7?±?0.1. The dihydroxamate anion AcAMDH behaves as a tetradentate bridging ligand through both hydroxamate groups, forming complexes with a metal to ligand ratio of 1?:?1 in the solid state. The FTIR spectra and thermal decompositions of the ligand and its metal complexes were recorded. The redox behavior of the complexes was investigated in aqueous solution by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, in solution the copper(II) and zinc(II) ions form stable complex species with a metal to ligand ratio of 1?:?2. The iron(II) and nickel(II) complexes show a two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo reversible electrode reactions. The stability constants of the complexes were determined by square wave voltammetry. 相似文献
8.
A study is made of electron-electron correlation functions for use in trial wave functions for small molecules. New forms are proposed that have only a few variational parameters, and these parameters have physical meanings that are easily discerned. Total energies for H 2, LiH and Li 2 computed using these correlation functions are presented, and comparison is made with previous forms, including the Jastrow-Pade form often used in Monte Carlo studies. We further treat the possibility that correlation depends not only on the separation of a pair of electrons but also on the location of the electron pair relative to the nuclei — indicative of a density-dependent or many body correlation effect. Our results indicate that such a many-body correlation effect is weakly present.This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 相似文献
9.
The synthesis of an α-substituted phthalocyanine oxo vanadium(IV) 1,4,8,11,15,18,22,25-octapentathiophthalocyanine ( 4) which absorbs at 850 nm in dichloromethane is reported. The complex is purple in colour and becomes green on reduction. The cyclic and square wave voltammetries of the complex show five redox couples. The spectroelectrochemical data showed only ring based processes. The ring reduced species is observed at wavelengths greater than 680 nm rather than the usual 500–600 nm range typical of ring reduced phthalocyanine complexes. 相似文献
10.
The application of silica coated quantum dots (QDs@SiO 2) in glucose detection in combination with glucose oxidase is reported. The high specific surface area of such particles can
be exploited to immobilise a greater amount of the enzyme on a modified electrode. In addition to this electrochemical method,
we report here an indirect optical technique based on the photoluminescence quenching of QDs by hydrogen peroxide produced
during glucose oxidation. The results obtained with these two different detection methodologies are compared.
Correspondence: Sara Cavaliere-Jaricot, Freiburg Materials Research Centre (FMF), Albert-Ludwig University Freiburg, Stefan-Meier-Strasse
21, D-79104 Freiburg, Germany 相似文献
11.
Health or environmental issue caused by abnormal level of metal ions like Zn 2+ or Cd 2+ is a worldwide concern. Developing an inexpensive and facile detection method for Zn 2+ and Cd 2+ is in urgent demand. Due to their super optical properties, fluorescent quantum dots (QDs) have been developed as a promising alternative for organic dyes in fluorescence analysis. In this study, a CdTe QDs-based sensitive and selective probe for Zn 2+ and Cd 2+ in aqueous media was reported. The proposed probe worked in fluorescence “turn-on” mode. The initial bright fluorescence of CdTe QDs was effectively quenched by sulfur anions (S 2−). The presence of Zn 2+ (or Cd 2+) can “turn-on” the weak fluorescence of QDs quenched by S 2− due to the formation of ZnS (or CdS) passivation shell. Under optimal conditions, a good linear relationship between the fluorescence response and concentration of Zn 2+ (or Cd 2+) could be obtained in the range from 1.6 to 35 μM (1.3–25 μM for Cd 2+). The limit of detection (LOD) for Zn 2+ and Cd 2+ were found to be 1.2 and 0.5 μM, respectively. Furthermore, the present probe exhibited a high selectivity for Zn 2+ and Cd 2+ over other metal ions and was successfully used in the detection of Zn 2+ or Cd 2+ in real water samples. 相似文献
12.
The biocompatible semiconductor quantum dots (QDs) have unique photophysical properties, which provide important advantages over organic dyes and lanthanide probes in fluorescence labeling applications. In this work, multicolor quantum QD-encoded microspheres have been prepared via the layer-by-layer (LbL) assembly approach. Polystyrene microspheres of 3 μm diameter were used as templates for the deposition of different sized CdTe QDs/polyelectrolyte multilayers via electrostatic interactions. Two kinds of biofuntional multicolor microspheres with two different antibodies, anti-human IgG and anti-rabbit IgG were prepared. Human IgG and rabbit IgG can be detected as target antigens in the multiplexed fluoroimmunoassays. Furthermore, a novel microfluidic on-chip device was developed to detect two kinds of antigen-conjugated multicolor QD-encoded microspheres; the microspheres can be distinguished from each other based on their fluorescence signals. 相似文献
13.
The unique binding event between Escherichia coli single-stranded DNA binding protein (SSB) and single-stranded oligonucleotides conjugated to gold (Au) nanoparticles is utilized for the electrochemical detection of DNA hybridization. SSB was attached onto a self-assembled monolayer (SAM) of single-stranded oligonucleotide modified Au nanoparticle, and the resulting Au-tagged SSB was used as the hybridization label. Changes in the Au oxidation signal was monitored upon binding of Au tagged SSB to probe and hybrid on the electrode surface. The amplified oxidation signal of Au nanoparticles provided a detection limit of 2.17 pM target DNA, which can be applied to genetic diagnosis applications. This work presented here has important implications with regard to combining a biological binding event between a protein and DNA with a solid transducer and metal nanoparticles. 相似文献
14.
Highly luminescent water-soluble CdTe quantum dots(QDs) have been synthesized with an electrogenerated precursor.The obtained CdTe QDs can possess good crystallizability,high quantum yield(QY) and favorable stability.Furthermore,a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs. 相似文献
15.
以天然高分子琼脂为稳定剂,采用简单便捷的一锅法制备Mn掺杂ZnS量子点/琼脂纳米复合凝胶,琼脂不仅作为制备量子点的稳定剂,同时也是纳米复合凝胶的主要成分。对该纳米复合凝胶中量子点的化学结构和尺寸大小进行了表征,并对纳米复合凝胶的荧光性能和凝胶性能进行了研究。实验结果表明,制备得到的纳米复合凝胶均一稳定,在302 nm紫外光下呈现十分明显的橙红色荧光。在该纳米复合凝胶的透射电子显微镜(TEM)表征中可以观察到大小比较均一、粒径为3 nm左右的纳米粒子,光谱分析结果进一步证实纳米复合凝胶中存在Mn掺杂ZnS量子点。该纳米复合凝胶不仅具有良好的荧光性能,还具有温度刺激响应性可逆溶胶-凝胶转变性能,同时具有较高的溶胶转变温度和较好的温度稳定性。利用这些性能特点,可以方便地制备纳米复合凝胶小球。此外,该纳米复合凝胶还可以被潜在应用于金属离子的荧光检测分析领域。 相似文献
16.
The interaction between mercaptoacetic acid (MA)-capped CdTe QDs, MA-capped CdTe/ZnS QDs or glutathione (GSH)-capped CdTe QDs with As(III) was studied using fluorescence spectrometry. As (III) has a high-affinity to reduced-GSH to form As(SG) 3, and the emission of the GSH-capped CdTe QDs ( λem. = 612 nm) is quenched effectively. Thus, a novel fluorescence spectrometric method was developed for As (III) determination by using GSH-CdTe QDs. Under optimal conditions, the quenched fluorescence intensity ( F0/ F) increased linearly with the concentration of As (III) ranging from 5.0 × 10 −6 to 25 × 10 −5 mol L −1. The limit of detection (3 σ) for As (III) was found to be 2 × 10 −8 mol L −1. This method is potentially useful in visual detection of As (III) under irradiation of the ultraviolet light. 相似文献
17.
随着纳米技术的进步,纳米颗粒正在被逐步应用到法庭科学领域的手印检验之中。近年来,半导体量子点因其良好的荧光特性而备受国内外法庭科学家的推崇,但大多数半导体量子点具有毒性,且会对环境造成污染,这些问题制约了半导体量子点在法庭科学领域中的应用。与传统有机染料和金属内核的半导体量子点相比,碳量子点具有毒性低、污染小、生物相容性优异的特点,现已应用于医学、生物、化学等多个领域。本文综述了半导体量子点在手印显现中的应用,介绍了碳量子点的研究进展,并指出碳量子点显现手印是今后法庭科学领域的重要研究方向。 相似文献
18.
Inspired by dual-signaling ratiometric mechanism which could reduce the influence of the environmental change, a novel, convenient, and reliable method for the detection of mercury ions (Hg 2+) based on Y-shaped DNA (Y-DNA) was developed. Firstly, the Y-DNA was formed via the simple annealing way of using two different redox probes simultaneously, omitting the multiple operation steps on the electrode. The Y-DNA was immobilized on the gold electrode surface and then an obvious ferrocene (Fc) signal and a weak methylene blue (MB) signal were observed. Upon addition of Hg 2+, the Y-DNA structure was transformed to hairpin structure based on the formation of T-Hg 2+-T complex. During the transformation, the redox MB gets close to and the redox Fc gets far away from the electrode surface, respectively. This special design allows a reliable Hg 2+ detection with a detection range from 1 nM to 5 μM and a low detection limit down to 0.094 nM. Furthermore, this biosensor exhibits good selectivity and repeatability, and can be easily regenerated by using l-cysteine. This study offers a simple and effective method for designing ratiometric biosensors for detecting other ions and biomolecules. 相似文献
20.
Features of Au NPs-aptamer conjugates as a powerful competitive reagent to substitute antibody in enhancing surface plasmon resonance spectroscopy (SPR) signal for the detection of small molecule are explored for the first time. In order to evaluate the sensing ability of Au NPs-aptamer conjugates as a competitive reagent, a novel SPR sensor based on indirect competitive inhibition assay (ICIA) for the detection of adenosine is constructed by employing the competitive reaction between antiadenosine aptamer with adenosine and antiadenosine aptamer with its partial complementary ss-DNA. The partial complementary ss-DNA of antiadenosine aptamer is firstly immobilized on SPR gold film as sensing surface. When the Au NPs-antiadenosine aptamer conjugates solution is added to SPR cell in the absence of adenosine, Au NPs-antiadenosine aptamer conjugates is adsorbed to SPR sensor by the DNA hybridization reaction, and results in a large change of SPR signal. However, the change of SPR signal is decreased when the mixing solution of adenosine with Au NPs-antiadenosine aptamer conjugates is added. This is because adenosine reacts with antiadenosine aptamer in Au NPs-antiadenosine aptamer conjugates and changes its structure from ss-DNA to tertiary structure, which cannot hybridize with its partial complementary ss-DNA immobilized on SPR gold surface. Based on this principle, a SPR sensor for indirect detection of adenosine can be developed. The experimental results confirm that the SPR sensor possesses a good sensitivity and a high selectivity for adenosine, which indirectly confirms that Au NPs-aptamer conjugates is a powerful competitive reagent. More significantly, it can be used to develop other SPR sensors based on ICIA to detect different targets by changing the corresponding type of aptamer in Au NPs-aptamer conjugates. 相似文献
|