首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MWNTs-IL-Gel/GCE, a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs) and ionic liquids (IL), was developed to serve as a sensor for simultaneous determination of Hydroquinone (HQ) and catechol (CC) in this paper. The modified GCE showed two well-defined redox waves for HQ and CC in both CV and DPV with a peak potential separation of ca. 0.1 V, which was large enough for simultaneous detection. The results revealed that the oxidation of HQ and CC with the enhancement of the redox peak current and the decrease of the peak-to-peak separation exhibit excellent electrocatalytic behaviors. A high sensitivity of 1.8×10(-7)M with detection limits of 6.7×10(-8)M and 6.0×10(-8)M (S/N=3) for HQ and CC were obtained. Moreover, the constants of apparent electron transfer rate of HQ and CC at MWNTs-IL-Gel/GCE were calculated as 7.402 s(-1) and 8.179 s(-1), respectively, and the adsorption quantity of HQ and CC was 1.408×10(-6) mol cm(-2) with chronocoulometry. The developed sensor can be applied to determinate directly of HQ and CC in aqueous solution.  相似文献   

2.
The electrocatalytic oxidation of glutathione (GSH) has been studied at the surface of ferrocene-modified carbon paste electrode (FMCPE). Cyclic voltammetry (CV), double potential step chronoamperometry, and differential pulse voltammetry (DPV) techniques were used to investigate the suitability of incorporation of ferrocene into FMCPE as a mediator for the electrocatalytic oxidation of GSH in buffered aqueous solution. Results showed that pH 7.00 is the most suitable for this purpose. In the optimum condition (pH 7.00), the electrocatalytic ability of about 480 mV can be found and the heterogeneous rate constant of catalytic reaction was calculated as . Also, the diffusion coefficient of glutathione, D, was found to be 3.61 × 10–5 cm2 s−1. The electrocatalytic oxidation peak current of glutathione at the surface of this modified electrode was linearly dependent on the GSH concentration and the linear analytical curves were obtained in the ranges of 3.2 × 10–5 M–1.6 × 10–3 M and 2.2 × 10–6 M–3.5 × 10–3 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.8 × 10–5 M and 2.1 × 10–6 M using CV and DPV, respectively. Finally, the electrocatalytic oxidation of GSH at the surface of this modified electrode can be employed as a new method for the voltammetric determination of glutathione in real samples such as human plasma.  相似文献   

3.
The electrooxidation of the antitumour drug 2-methyl-9-hydroxyellipticinium (Celiptium) was investigated by cyclic, differential-pulse and adsorptive voltammetry at carbon paste (CPE) and lipid-modified carbon paste electrodes (LM-CPE). The influence of the paste composition, i.e., the ratio of graphite to binder, was studied in order to elucidate the nature of the accumulation process at the surface of the CPE. The electrode surface coverage at saturation was calculated. A.c. measurements at the CPE and at the LM-CPE during the accumulation of Celiptium demonstrated an increased differential double layer capacity of the LM-CPE. The influence of several parameters that affect the adsorptive step at the CPE was investigated, such as pH, ionic strength and interfering ions. Improved signals were obtained at the CPE and the detection limit in 0.1 M sodium perchlorate (tacc.=3 min) was found to be 2 × 10?10 M. Measurements of the drug in dilute standard serum samples were done using the medium-exchange technique.  相似文献   

4.
A sensitive and stable electrochemical sensor was developed by modification of carbon paste electrode with ZrO2/graphene/chitosan nanocomposite. The modified sensor served as a potential electrocatalytic platform for dopamine. Electrochemical impedance spectroscopy studies indicated reduction of charge transfer resistance at the modified electrode surface thereby facilitating the electron transfer process which resulted in higher current response to dopamine. The electrochemical behavior of dopamine at the modified electrode was studied using cyclic and square wave voltammetry. The maximum current response for the electro-oxidation of dopamine was observed at pH 7.4 and the process was realized to be diffusion controlled. The modified sensor demonstrated linearity in the range 1000–5000 nM, with high sensitivity (22 nA/nM), detection limit of 11.3 nM and selectivity for dopamine in the presence of ascorbic and uric acid which are found to co-exist with dopamine in physiological media. The method was employed for quantification of dopamine in a pharmaceutical formulation.  相似文献   

5.
A novel amperometric sensor and chromatographic detector for determination of parathion has been fabricated from a multi-wall carbon nano-tube (MWCNT)/Nafion film-modified glassy-carbon electrode (GCE). The electrochemical response to parathion at the MWCNT/Nafion film electrode was investigated by cyclic voltammetry and linear sweep voltammetry. The redox current of parathion at the MWCNT/Nafion film electrode was significantly higher than that at the bare GCE, the MWCNT-modified GCE, and the Nafion-modified GCE. The results indicated that the MWCNT/Nafion film had an efficient electrocatalytic effect on the electrochemical response to parathion. The peak current was proportional to the concentration of parathion in the range 5.0×10–9–2.0×10–5 mol L–1. The detection limit was 1.0×10–9 mol L–1 (after 120 s accumulation). In high-performance liquid chromatography with electrochemical detection (HPLC–ED) a stable and sensitive current response was obtained for parathion at the MWCNT/Nafion film electrode. The linear range for parathion was over four orders of magnitude and the detection limit was 6.0×10–9 mol L–1. Application of the method for determination of parathion in rice was satisfactory.  相似文献   

6.
A carbon paste electrode (CPE) modified with carbon nanotubes and 5‐amino‐3’,4’‐dimethyl‐ bi‐ phenyl‐2‐ol (5ADB) is prepared. Under the optimum pH of 7.0, the oxidation of ascorbic acid (AA) on the modified CPE occurs at a potential about 280 mV less positive than that on the unmodified CPE. Some kinetic and thermodynamic parameters for electrocatalytic oxidation of AA, including electron transfer coefficient (α = 0.58) and diffusion coefficient (D = 2.2 × 10-6 cm2/s), are also determined. AA, acetaminophen (AC), and tryptophan (TRP) were detected simultaneously using the modified CPE. The peak potentials recorded using the modified CPE in phosphate‐buffered solution at pH 7.0 were 265, 465, and 780 mV for AA, AC, and TRP, respectively. The modified CPE was successfully used to determine the concentrations of AA, AC, and TRP in real samples.  相似文献   

7.
Rogers KR  Becker JY  Cembrano J  Chough SH 《Talanta》2001,54(6):1059-1065
The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wide range of viscosities (10–60 000 mPa s−1 at 25°C) while minimizing polarity effects. The highest response for both phenol and catechol was achieved using a silicon oil binder of intermediate viscosity (100 mPa s−1). The binder viscosity showed no appreciable effect on the direct oxidation of phenol and catechol using a plain CPE, suggesting the involvement of diffusion kinetics in the binder matrix for the enzyme-based CPE. The effect of the relative binder concentration in the carbon paste was measured over the range of 30–70%. Optimal results were obtained using 40% silicon oil. For comparison of the viscosity effects observed with the carbon paste electrode (CPE) containing silicon oil, other low and high viscosity mineral oils and paraffin waxes were also examined.  相似文献   

8.
In this study, we investigate highly efficient sonogel carbon electrode (SGC/TiO2) modified with nanostructured titanium dioxide synthesized via sol-gel method employing surfactant template for tailor-designing the structural properties of TiO2. The stable SGC/TiO2 electrode detects catechol, a neurotransmitter, in the presence of ascorbic acid, a common interferent, using cyclic voltammetry. A possible rationale for the stable catechol detection of SGC/TiO2 electrode is attributed to most likely the adsorption of catechol onto highly porous TiO2 (surface area of 147 m2 g−1 and porosity of 46.2%), and the formation of C6H4(OTi)2 bond between catechol and TiO2. The catechol absorbed onto TiO2 rapidly reaches the SGC surface, then is oxidized, involving two electrons (e) and two protons (H+). As a result, the surface of TiO2 acts as an electron-transfer accelerator between the SGC electrode and catechol. In addition to the quantitative and qualitative detection of catechol, the SGC/TiO2 electrode developed here meets the profitable features of electrode including mechanical stability, physical rigidity, and enhanced catalytic properties.  相似文献   

9.
An ionic liquid-type carbon paste electrode (IL-CPE) had been fabricated by replacing non-conductive organic binders with a conductive room temperature ionic liquid, 1-pentyl-3-methylimidazolium hexafluorophosphate (PMIMPF6). The electrochemical responses of calcium dobesilate were investigated at the IL-CPE and the traditional carbon paste electrode (T-CPE) in 0.05 mol L−1 H2SO4, respectively. The results showed the superiority of IL-CPE to T-CPE in terms of provision of higher sensitivity, faster electron transfer and better reversibility. A novel method for determination of calcium dobesilate was proposed. The oxidation peak current was rectilinear with calcium dobesilate concentration in the range of 8.0 × 10−7 to 1.0 × 10−4 mol L−1, with a detection limit of 4.0 × 10−7 mol L−1(S/N = 3) by differential pulse voltammetry. The proposed method was applied to directly determine calcium dobesilate in capsule and urine samples.  相似文献   

10.
在0.40 mol/L的NaAc-HAc(pH 4.5)缓冲液中,使用JP-303极谱分析仪,依诺沙星在碳糊电极(CPE)上有一灵敏的吸附伏安氧化峰,峰电位为1.17 V(vs.SCE).该氧化峰的二阶导数峰电流与依诺沙星的浓度在4.0×10-9~4.0×10-7 mol/L(富集90 s)范围内呈良好的线性关系,相关系数为0.995,检出限为2.0×10-9 mol/L(S/N=3,富集110 s).探讨了依诺沙星在碳糊电极上的伏安性质和电极反应机理,并且用于诺佳胶囊中依诺沙星的测定.  相似文献   

11.
A p-duroquinone (tetramethyl-p-benzoquinone) modified carbon paste electrode (DMCPE) was employed to study the electrocatalytic reduction of nitrite in aqueous solutions using cyclic voltammetry (CV), double potential-step chronoamperometry, and differential pulse voltammetry (DPV). It has found that under an optimum condition (pH 1.00), the reduction of nitrite at the surface of DMCPE occurs at a potential of about 660 mV less negative than that of an unmodified carbon paste electrode (CPE). The catalytic rate constant, kh, based on Andrieux and Saveant theoretical model was calculated as for scan rate 10 mV s-1. Also, the apparent diffusion coefficient, D app, was found as 2.5 × 10–10 and 3.61 × 10–5 cm2 s-1 for p-duroquinone in carbon paste matrix and nitrite in aqueous buffered solution, respectively. The values for αnα were estimated to be −0.65 and −0.19 for the reduction of nitrite at the surface of DMCPE and CPE, respectively. The electrocatalytic reduction peak currents showed a linear dependence on the nitrite concentration, and a linear analytical curve was obtained in the ranges of 5.0 × 10–5 M to 8.0 × 10–3 M and 6.0 × 10–6 M to 8.0 × 10–4 M of nitrite concentration with CV and DPV methods, respectively. The detection limits (2σ) were determined as 2.5 × 10–5 M and 4.3 × 10–6 M by CV and DPV methods. This method was also applied as a simple, selective and precise method for determination of nitrite in real samples (the weak liquor from the wood and paper factory of Mazandaran province in Iran) by using a standard addition method.  相似文献   

12.
Farghaly OA  Mohamed NA 《Talanta》2004,62(3):531-538
Azithromycin (AZ) is the first member of a class of macrolide azalides antibiotics called azolides. A simple and selective square-wave voltammetric (SWV) method has been developed for the determination of azithromycin in pure form, in pharmaceutical preparation and in biological samples. Determination of azithromycin was accomplished with hand-make carbon paste electrode (CPE) in oxidative screen mode. The counter and reference electrodes were a Pt wire and a Ag/AgCl, respectively. Various parameters that can influence the peak signal (effect of buffer, ionic strength, accumulation time, pH and the composition of the paste) have been scrutinized. The best results were obtained in acetonitrile—aqueous 1 M sodium acetate-acetic acid buffer (pH 4.6) containing 0.1 M KCl (1:9; v/v) using a 15% paraffin oil CPE. The limits of detection and quantification of the pure drug are 0.463 and 1.544 ppb (with the correlation coefficient, r=0.9785and the standard deviation, S.D.=0.1 (n=5), for the accumulation time of 60 s), respectively. The method was successfully applied to the determination of the drug in urine and two forms of pharmaceutical formulations. Recoveries were 99.2—100.5% with S.D.=0.1—and 0.8% (n=5).  相似文献   

13.
Farghaly OA 《Talanta》2004,63(2):497-501
A square wave adsorptive stripping voltammetric (SWAdSV) method for the indirect determination of trace amounts of magnesium with thiopentone sodium (TPS) as an electroactive ligand, at carbon paste mercury film electrode (CP-MFE) is proposed. It is observed that the increase of the square wave voltammetric cathodic peak current of TPS, under alkaline conditions, is linear with the increase of Mg concentration. Under optimum experimental conditions viz.; pH 10.75, 3×10−5 M TPS and 0.05 M phosphate buffer (Na2HPO4-NaH2PO4), a linear relation in the range 6×10−9 to 9×10−8 M Mg2+ (0.14-2.16 ppb), at 60 s deposition time, is obtained. The detection limit of Mg2+ is 0.14 ppb for 60 s deposition time with the relative standard deviation is 0.5% (n=5). The proposed method was successfully applied to the determination of magnesium in urine and tap water samples with satisfactory results. The data obtained are compared with the standard flame atomic absorption spectrophotometric method (FAAS).  相似文献   

14.
以离子液体(1-丁基-3-甲基咪唑六氟磷酸盐、[BMIM]PF6)和石蜡油的混合物为碳糊电极(CPE)黏和剂,固定酪氨酸酶(Tyrosinase),制备了一种新型酪氨酸酶碳糊生物传感器(T-CPE-IL)。T-CPE-IL较传统酪氨酸酶碳糊电极(TCPE)对邻苯二酚的响应灵敏度有明显提高,且电极响应快、稳定性好。T-CPE-IL峰电流的增加与邻苯二酚浓度在20-200μmol内呈良好的线性关系,检出限可达3μmol。同时,FT-IR的初步研究表明,[BMIM]PF6对酪氨酸酶的二级结构产生了一定的影响。  相似文献   

15.
Zhang Y  Zheng J 《Talanta》2008,77(1):325-330
An ionic liquid modified carbon paste electrode (IL/CPE) had been fabricated by using hydrophilic ionic liquid 1-amyl-3-methylimidazolium bromide ([AMIM]Br) as a modifier. The IL/CPE was characterized by scanning electron microscope and voltammetry. Electrochemical behavior of rutin at the IL/CPE had been investigated in pH 3.29 Britton-Robinson (B-R) buffer solution by cyclic voltammetry (CV) and square wave voltammetry (SWV). The experimental results suggested that the modified electrode exhibited an electrocatalytic activity toward the redox of rutin. The electron transfer coefficient (α) and the standard rate constant (ks) of rutin at the modified electrode were calculated. Under the selected conditions, the reduction peak current was linearly dependent on the concentration of rutin in the range of 4.0 × 10−8 to 1.0 × 10−5 mol L−1 (r = 0.9998), with a detection limit of 1.0 × 10−8 mol L−1 (S/N = 3). The relative standard deviation (R.S.D.) for six times successful determination of 8.0 × 10−7 mol L−1 rutin was 1.2%. The proposed method was applied to determine rutin in tablet and urine sample. In addition, the IL/CPE exhibited a distinct advantage of simple preparation, surface renewal, good reproducibility and good stability.  相似文献   

16.
A sensitive and selective electrochemical sensor for the determination of glutathione(GSH) was developed using a modified multiwall carbon nanotube paste electrode with 3,4 dihydroxy cinnamic acid as a mediator.This modified electrode showed very high electrocatalytic activity for the anodic oxidation of GSH.Under the optimized conditions,the electrocatalytic peak current showed a linear relationship with GSH concentration in the range of 0.5-400.0 μmol/L with a detection limit of 0.1 μmol/L GSH.The relative standard deviations for seven successive assays of 5.0 and 25.0 μmol/L GSH were 2.2% and 2.7%,respectively.The modified electrode was used for the determination of GSH compounds in real urine samples.  相似文献   

17.
A new modified carbon paste electrode based on a recently synthesized mercury (II) complex of a pyridine containing proton transfer compound as a suitable carrier for Br ion is described. The electrode has a linear dynamic range between 3.00×10−2 and 1.0×10−5 M with a near-Nernastian slope of 61.0±0.9 mV per decade and a detection limit of 4.0×10−6 M (0.32 ppm). The potentiometric response is independent of the pH of the solution in the pH range 4.0–8.3. The electrode possesses the advantages of low resistance, fast response and good over a variety of other anions. It was applied as an indicator electrode in potentiometric titration of bromide ions and for the recovery of Br from tap water.  相似文献   

18.
A chemically modified carbon paste electrode with 3,4-tetra pyridinoporphirazinatocobalt(II) (Co(3,4 tppa) was applied to the determination of free cyanide ion. The electrode has a linear range between 1.5 × 10−5 M and 1.0 × 10−2 M with a Nernstian slope of 60 ± 1.5 mV/decade and its detection limit is 9 × 10−6 M. The response time of electrode is 5 min. The proposed electrode was applied successfully for the determination of cyanide in commercially available spring water. Some anions, such as SCN, I, Cl, Br and oxalate that are usually serious interfering species for most of cyanide selective electrodes, did not have any interfering effect for this proposed electrode.  相似文献   

19.
Polyphenol oxidases from eggplant have a high catalytic activity for the aerobic oxidation of catechol to o-quinone with selectivity over other phenolic substrates. An amperometric biosensor can therefore be constructed by incorporating selected portions of eggplant tissue in a carbon paste electrode. The proposed biosensor provides a selective response for catechol in the micromolar range, with a very fast response time and a useful lifetime of at least 3 weeks.  相似文献   

20.
By using a molecularly imprinted polymer (MIP) as a recognition element, the design and construction of a high selective voltammetric sensor for para-nitrophenol was formed. Para-nitrophenol selective MIP and a non-imprinted polymer (NIP) were synthesized, and then used for carbon paste (CP) electrode preparation. The MIP-CP electrode showed greater recognition ability in comparison to the NIP-CP. It was shown that electrode washing after para-nitrophenol extraction led to enhanced selectivity, without noticeably decreasing the sensitivity. Some parameters affecting sensor response were optimized and a calibration curve was plotted. A dynamic linear range of 8 × 10−9 to 5 × 10−6 mol L−1 was obtained. The detection limit of the sensor was calculated as 3 × 10−9 mol L−1. Thus, this sensor was used successfully for the para-nitrophenol determination in different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号