首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poly(4-aminobenzoic acid/o-toluidine) (4-AB/OT) modified carbon paste electrode (CPE) was fabricated by consecutive cyclic voltammetry. The poly(4-AB/OT) CPE shows catalytic activity for the oxidation of nitrite in 0.1 M phosphate buffer solution (pH 7). Due to the electrostatic interaction between the negatively-charged nitrite ions and the positively-charged poly(4-AB/OT) film, the operating potential for nitrite oxidation was shifted about 240 mV to negative side, compared to bare CPE. The catalytic peak current was found to be linear with the nitrite concentration in the range of 6–600 μM, with a correlation coefficient of 0.981, using amperometry. The sensitivity and limit of detection for the poly(4-AB/OT) CPE are about 187.4 μA/mM and 3.5 μM, respectively. The possible interferences from several common ions were tested. The developed sensor was also successfully applied to the determination of nitrite concentration in a mineral water sample.  相似文献   

2.
Hydrophobic ionic liquid-functionalized SBA-15 modified carbon paste electrode (CPSPE) was fabricated, and its electrochemical performance was investigated by cyclic voltammetry, electrochemical impedance spectra, and chronocoulometry in K3Fe(CN)6/K4Fe(CN)6 solution. Compared with carbon paste electrode (CPE) and SBA-15 modified carbon paste electrode (CSPE), the electron transfer ability was in the sequence as: CPSPE>CSPE>CPE. Meanwhile, the electrocatalytic activity of CPSPE to catechol and hydroquinone was evaluated by cyclic voltammetry, and then, the linear concentration ranges were obtained by the amperometric detection from 2.0?×?10-5 to 3.2?×?10-4 M for catechol and 5.0?×?10-5 to 5.5?×?10-4 M for hydroquinone, with the detection limits of 5.0?×?10-7 and 6.0?×?10-7 M, respectively. The advantages of both ionic liquids and heterogeneous supports made CPSPE exhibit high electrocatalytic activity towards the redox of catechol and hydroquinone by significantly improving their reversibility and enhancing their peak currents. In addition, the present method was applied to the determination of catechol and hydroquinone in artificial wastewater sample, and the results were satisfactory.  相似文献   

3.
In this work, we present a simple and efficient method for preparation of widely dispersed PtNiCo nanocatalyst on FTO without the use of any heavy complex structure. The proposed nanocatalyst enhances the chemical interaction of PtNiCo/FTO and increases its catalytic activity, which was used for electrochemical sensing of catechol and hydroquinone. The surface morphology was characterized by TEM, HRTEM, and XRD. The size of the PtNiCo/FTO octahedrons nanocatalyst was about 0.35–4 nm. Gradual increase of concentration exhibited linearity in oxidation peak response up to 1100 μM with a low detection limit of 0.79 μM for HQ and 1.05 μM for CC. The sensitivity is 1035 μAmM−1 cm−2 for catechol and 1197 μAmM−1 cm−2 for hydroquinone. The prepared nanomaterial/sensor applied to real water samples with good reproducibility (98–99 %).  相似文献   

4.
The present research involves the report on electrochemical deportment of Carbendazim (MBC) at multiwalled carbon nanotubes and calcium‐doped zinc oxide nanoparticles altered nanocomposite based carbon paste electrode (MWCNTs/Ca‐ZnO‐CPE). The modified carbon paste evidenced manifest electrocatalytic behavior for MBC in 0.2 M phosphate buffer (PB) solutions. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), and square wave voltammetry (SWV) techniques were used for the analysis. The working electrode assembly exhibits faster electron transfer of MBC with increase in the peak current. At bare CPE, MBC showed maximum peak current of 1.098 μA at potential 0.7568 V whereas at MWCNT/Ca‐ZnO/CPE peak current of 5.203 μA was observed at potential 0.7541 V in 0.2 M PBS of pH 7.0 at the sweep rate of 50 mV s?1. The synthesized 5 % Ca‐ZnO nanoparticles (NPs) were characterized by X‐ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X‐ray analysis (EDX), and Transmission electron microscopy (TEM) analysis. Various factors influencing the voltammetry of MBC such as pre‐concentration time, pH, sweep rate, and amount of MBC were studied and from the studies we observed that the response was found to be diffusion‐controlled. The concentration variation studies for MBC was watched in the linear working range of 0.01 μM to 0.45 μM and the detection limit was found by SWV technique.  相似文献   

5.
Singh RP 《The Analyst》2011,136(6):1216-1221
Tyrosinase has been immobilized on a Au nanoparticles encapsulated-dendrimer bonded conducting polymer on a glassy carbon electrode for the estimation of catechol. The modified electrode was characterized by cyclic voltammetry and AFM techniques. The principle of catechol estimation was based on the reduction of biocatalytically liberated quinone species at +0.2 V versus Ag/AgCl (3 M KCl), with good stability, sensitivity, and featuring a low detection limit (about 0.002 μM) and wide linear range (0.005 μM-120 μM). The electrochemical redox peak of catechol on the GCE/PolyPATT/Den(AuNPs)/tyrosinase was also investigated. A response time of 7 s, reusability up to 5 cycles and a shelf life of more than 2 months under refrigerated conditions were reported. Various parameters influencing biosensor performance have been optimized including pH, temperature, and applied potential. The utility and application of this nanobiosensor was tested in a real water samples.  相似文献   

6.
The simple and effective method for the novel synthesis of Pt-based nanoparticle was presented with high efficiency. The sensitive catalyst for the simultaneous detection of catechol and hydroquinone was prepared by depositing ternary metal complex on fluorine-doped tin-oxide (FTO). The composition and morphology of nanomaterials were characterized by TEM, HRTEM, XRD, XPS, and EDS (energy dispersive spectroscopy). The size of the Pt-based nanomaterial was about 5±1 nm. The electrochemical performance of the modified catalyst was studied by CV, DPV, and EIS. The modified PtNiCu@FTO catalyst possessed good electro-oxidation activity for hydroquinone and catechol and used for simultaneous detection of catechol and hydroquinone at scan rate of 20 mV s−1 (vs. Ag/AgCl). Detection responses were found in the ranges of 5–2900 μM for hydroquinone and 5–3000 μM for catechol. The detection limits (LOD) for HQ and CC were observed as 0.35 and 0.29 μM, respectively. The sensitivity of HQ and CC were 1515.55 and 1485 μA mM−1 cm−2, respectively. The prepared nanomaterial were effectively applied for the determination of CC and HQ in real samples.  相似文献   

7.
In this study, poly (pyrrole-co-o-anisidine)/chitosan composite (Cs) films were prepared by cyclic voltammetry technique on platinum electrode using different pyrrole and o-anisidine mole ratios. Immobilization process was accomplished in CoII-(N,N′-bis(salicylidene)-2-aminobenzylamine)(CoL) dissolved 0.15 M acetonitrile-LiClO4 solution by cyclic voltammetry technique at 0.2–2.0 V potential range. Three electrode methods were applied in all electrochemical studies. After immobilization process, the characterizations of the electro catalytic surfaces (Cs−CoL−Pt) were carried out by cyclic voltammetry and SEM images. The SEM images clearly indicated that the [CoL] complex is immobilized onto composite films. The electrocatalytic activity of the modified electrodes on the catechol was investigated using buffer solutions of different pH values. The results of catalytic studies revealed that, pH=10 buffer solution was the optimal solution and 1 : 1 Cs−CoL−Pt electrode was the best electrode for catechol oxidation. In square wave voltammetry measurements using this electrode, two linear working ranges were determined. The linear response ranges for catechol determination were found as 3.0 μM–6.0 μM and 16 μM–80 μM for the first and the second linear working ranges, respectively, with 1.1 μM detection limit.  相似文献   

8.
《Electroanalysis》2005,17(10):832-838
A simply and high selectively electrochemical method for simultaneous determination of hydroquinone and catechol has been developed at a glassy carbon electrode modified with multiwall carbon nanotubes (MWNT). It was found that the oxidation peak separation of hydroquinone and catechol and the oxidation currents of hydroquinone and catechol greatly increase at MWNT modified electrode in 0.20 M acetate buffer solution (pH 4.5). The oxidation peaks of hydroquinone and catechol merge into a large peak of 302 mV (vs. Ag/AgCl, 3 M NaCl) at bare glassy carbon electrode. The two corresponding well‐defined oxidation peaks of hydroquinone in the presence of catechol at MWNT modified electrode occur at 264 mV and 162 mV, respectively. Under the optimized condition, the oxidation peak current of hydroquinone is linear over a range from 1.0×10?6 M to 1.0×10?4 M hydroquinone in the presence of 1.0×10?4 M catechol with the detection limit of 7.5×10?7 M and the oxidation peak current of catechol is linear over a range from 6.0×10?7 M to 1.0×10?4 M catechol in the presence of 1.0×10?4 M hydroquinone with the detection limit of 2.0×10?7 M. The proposed method has been applied to simultaneous determination of hydroquinone and catechol in a water sample with simplicity and high selectivity.  相似文献   

9.
A silica gel-modified carbon paste electrode (Si-CPE) was fabricated and used for determination of pyrogallol. Cyclic and differential pulse voltammetric studies show that Si-CPE lowers oxidation potential remarkably increases its oxidation peak current and improves electrochemical behavior of pyrogallol, compared to unmodified CPE. The effects of pH value, amount of silica, accumulation potential and time on the oxidation peak current of pyrogallol were examined. As a result, a sensitive, rapid and convenient electroanalytical method was developed for pyrogallol. The linear range is from 2 to 300 μM, and the limit of detection is 0.7 μM after 4.0 min accumulation. Interferences from some inorganic salts and organic compounds were studied. Finally, the method was successfully used to determine pyrogallol in tap water, green tea and artificial urine samples  相似文献   

10.
The synthesis and anti-tumoral properties of a series of compounds possessing a ferrocenyl group tethered to a catechol via a conjugated system is presented. On MDA-MB-231 breast cancer cell lines, the catechol compounds display a similar or greater anti-proliferative potency (IC(50) values ranging from 0.48-1.21 μM) than their corresponding phenolic analogues (0.57-12.7 μM), with the highest activity found for species incorporating the [3]ferrocenophane motif. On the electrochemical timescale, phenolic compounds appear to oxidize to the quinone methide, while catechol moieties form the o-quinone by a similar mechanism. Chemical oxidation of selected compounds with Ag(2)O confirms this interpretation and demonstrates the probable involvement of such oxidative metabolites in the in vitro activity of these species.  相似文献   

11.
In this study we report the development of an amperometric cholesterol biosensor based on cholesterol oxidase from Pseudomonas sp. and catalase immobilized in carbon paste electrode (CPE) modified with multiwall carbon nanotubes (MWCNT) and ionic liquid (IL). The working electrode (CPE/MWCNT-IL/Microorganism (MO)-Catalase) was characterized by impedance spectroscopy and cyclic voltammetry at different stages of its construction. This proposed cholesterol biosensor performed linear relationship in the range of 5–600 μM with a low detection limit of 1.52 μM. The biosensor showed good sensitivity and high selectivity and it was successfully applied for the measurement of cholesterol levels in lyophilized serum samples.  相似文献   

12.
《Electroanalysis》2018,30(8):1767-1773
A novel modified carbon paste electrode (CPE) based on an MnO2‐TiO2 nanocomposite and 2‐(3,4 dihydroxyphenethyl) isoindoline‐1,3‐dione (DPID) as the modifier for the simultaneous analysis of cysteine (Cys), tryptophan (Trp) and uric acid (UA), as three key biochemicals present in human body. The MnO2/TiO2 nanocomposite was synthesized through a chemical co‐precipitation approach and the resulting electrode (MnO2‐TiO2/DPID/CPE) was used for studying the electrochemical oxidation of cysteine (Cys), tryptophan (Trp) and uric acid. As opposed to conventional CPEs, the oxidation peak potential of cysteine on MnO2‐TiO2/DPID/CPE had a 600.0 mV decrease in overpotential and could be observed at 30.0 mV, and the signals were linear from 0.025 to 200.0 μM, and a lower detection limit of 0.013 μM was reached. The MnO2‐TiO2/DPID/CPE was satisfactorily used for the concurrent analysis of Cys, Trp and UA in pharmaceutical and biological samples.  相似文献   

13.
A modified electrode was prepared by modification of the carbon paste electrode (CPE) with a nanostructured material. This nanostructure with electrocatalytic activity was synthesized by combination of poly pyrrole and copper oxide nanoparticles (PPy/CuO). The structure and morphology of PPy/CuO was studied. The fabricated modified electrode (CPE‐PPy/CuO) exhibited an excellent electrocatalytic activity toward levodopa (L‐DOPA) and uric acid (UA) oxidation because of high conductivity, low electron transfer resistance and catalytic effect. The CPE‐PPy/CuO had a lower overvoltage and enhanced electrical current with respect to the bare CPE for both L‐DOPA and UA. Also, the modified electrode showed a good resolution for the overlapped anodic peaks of L‐DOPA and UA. This electrode was used for the successful simultaneous determination of L‐DOPA and UA. The electrochemical sensor responded to L‐DOPA and UA in the concentration range of 0.050–1200 μM and 0.040–2000 μM, respectively. The detection limits were obtained by differential pulse voltammetry as 15 nM for L‐DOPA and 20 nM for UA. Finally, the proposed electrode was used for determination of L‐DOPA and UA in real samples using standard addition method.  相似文献   

14.
《Electroanalysis》2004,16(19):1576-1582
DeniLite laccase immobilized Pt electrode was used for detection of catechol and catecholamines. The enzymatically oxidized substrates were measured amperometrically. The sensitivities are 210, 75, 60 and 45 nA/μM with the upper limits of linear ranges of 58, 40, 55 and 55 μM and the detection limits (S/N=3) of 0.07, 0.2, 0.3 and 0.4 μM for catechol, dopamine (DA), norepinephrine (NEPI) and epinephrine (EPI), respectively. The response time (t90%) is about 2 seconds for each substrate and the long‐term stability is around 40–50 days with retaining 80% of initial activity. The very fast response and the remarkable long‐term stability are the principal advantages of this sensor. In case of catechol, the pH response of the sensor is mainly determined by enzyme's pH profile, however, in case of catecholamines, both enzyme's pH profile and reversibility of the substrate are operated and the optimal pHs for NEPI and EPI shift towards acidic range compared to that for DA. The presence of ascorbic acid (<50 μM) did not interfere with the measurement.  相似文献   

15.
In this work, a simple, cheap, sensitive, and selective modified carbon paste electrode is proposed for the electroanalytical determination of Levofloxacin (LEVO), the drug used to treat pneumonia caused by coronavirus. The electrochemical polymerization method was applied to create a thin poly-murexide film (POMUR) on the bare carbon paste electrode (BCPE) surface to enhance its electrocatalytic activity. The peak current response of LEVO obtained by POMUR/CPE was increased by 14.2 μA compared to BCPE. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques were employed to characterize BCPE and POMUR/CPE. Under the optimal experimental circumstances, the prepared sensor was capable of determining LEVO with a low limit of detection (LOD) of 7.18 nM (S/N = 3) for a linear dynamic range of 25 – 1 × 103 nM utilizing differential pulse voltammetry (DPV). Moreover, the practical applicability of POMUR/CPE for determining LEVO in pharmaceutical formulations and biological samples (human serum) demonstrated high sensitivity and selectivity with a recovery of 95.08 – 100.5 %.  相似文献   

16.
Rogers KR  Becker JY  Cembrano J  Chough SH 《Talanta》2001,54(6):1059-1065
The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wide range of viscosities (10–60 000 mPa s−1 at 25°C) while minimizing polarity effects. The highest response for both phenol and catechol was achieved using a silicon oil binder of intermediate viscosity (100 mPa s−1). The binder viscosity showed no appreciable effect on the direct oxidation of phenol and catechol using a plain CPE, suggesting the involvement of diffusion kinetics in the binder matrix for the enzyme-based CPE. The effect of the relative binder concentration in the carbon paste was measured over the range of 30–70%. Optimal results were obtained using 40% silicon oil. For comparison of the viscosity effects observed with the carbon paste electrode (CPE) containing silicon oil, other low and high viscosity mineral oils and paraffin waxes were also examined.  相似文献   

17.
《Electroanalysis》2018,30(3):571-582
The present study deals with the development of an electrochemical sensor for quantitative determination of Bezafibrate (BZF) based on carbon nanofibers/polyaniline/platinum nanoparticles modified carbon paste electrode (CNF/PANI/Pt/CPE). BZF is a fibric acid derivative and is used largely in the treatment of lipid disorders. The nanocomposite was synthesized by in situ polymerization of aniline using ammonium persulphate and platinum nanoparticles were uniformly decorated on the CNF/PANI surface by reducing hexachloroplatinic acid using sodium borohydride. The electrochemical response of BZF at CNF/PANI/Pt/CPE was studied using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The above study resulted into significant improvement of the electrochemical signal towards the oxidation of BZF, revealing that the oxidation process is highly favorable at the surface of modified electrode. The anodic peak current Ip (μA) is found to be linearly dependent on BZF concentration in the range of 0.025 μM to 100 μM with a detection limit of 2.46 nM. The practical analytical utilities of the sensor were investigated by performing the experiments on synthetic pharmaceutical formulations, human blood serum and urine samples which offered good recovery, suggesting the high efficacy and authenticity of CNF/PANI/Pt/CPE sensor for BZF determination.  相似文献   

18.
Poly(o-toluidine) (sodium dodecyl sulfate) (POT(SDS)) film was electrosynthesized on carbon paste electrode (CPE) by using the cyclic voltammetry technique in aqueous solution containing o-toluidine (OT), sulfuric acid and SDS. Then, copper oxide was incorporated by immersion of POT(SDS)/CPE in a solution of copper sulfate and using constant potential method. Then, the electrochemical characterization of the modified electrode is presented in alkaline solution. For the first time, electrochemical behaviour of amoxicillin (AMX) at the Cu/POT(SDS)/CPE has been investigated using cyclic voltammetry (CV) and chronoamperometric method. The experimental results suggest that the modified electrode exhibits electrocatalytic effect on the oxidation of AMX resulting in a marked enhancement of the anodic peak current response. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of AMX in the range 80–200 and 5–150 μM with CV and amperometric method, respectively. The detection limits (2δ) were also estimated to be 60 and 3 μM. Some kinetic parameters such as the transfer second-order rate constant (k = 4.9 × 106 cm3 mol–1 s–1) of AMX was calculated. Therefore, this modified electrode was a simple, rapid and new electrode to determine AMX in pharmaceutical preparations.  相似文献   

19.
A sensitive, rapid and convenient electrochemical method was developed for the determination of nifedipine based on the greatly-increased oxidation signal on polyvinylpyrrolidone (PVP) surface. In pH 7.5 phosphate buffer, an irreversible oxidation peak at 0.75 V was observed for nifedipine. Compared with the unmodified carbon paste electrode (CPE), the PVP-modified CPE remarkably enhanced the oxidation peak current of nifedipine, showing strong signal enhancement effect. The influence of pH value, amount of PVP, accumulation potential and time on the oxidation peak current of nifedipine was studied. The linear range was from 75 nM to 50 μM, and the detection limit was 20 nM. The proposed method was used to determine the content of nifedipine in tablet samples, and the results consisted with the declared values. Moreover, the recovery tests were performed and the value of recovery was over the range from 97.3 to 102.7%.  相似文献   

20.
This paper reports the preparation of multiwalled carbon nanotubes/4,4′-dihydroxybiphenyl (MWCNTs-DHB) nanolayered composite as a new modifier for modification of carbon paste electrode (CPE/MWCNTs-DHB). CPE/MWCNTs-DHB shows linear responses for phenol in the concentrations range of 0.04–220 μM with a current sensitivity of 0.67 μA μM−1 and a detection limit of 8.0 nM (S/N=3). The electrode shows high selectivity, good repeatability (RSD=4.1 %), excellent reproducibility (RSD=3.5 %), and acceptable stability (91.2 % over one-month storage). Moreover, the modified CPE exhibits appreciable recoveries (93.0–104.0 %) indicating its acceptable performance for determination of phenol in tap and river water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号