首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rapid and sensitive DNA targets detection using enzyme amplified electrochemical detection (ED) based on microchip was described. We employed a biotin‐modified DNA, which reacted with avidin‐conjugated horseradish peroxidase (avidin–HRP) to obtain the HRP‐labeled DNA probe and hybridized with its complementary target. After hybridization, the mixture containing dsDNA‐HRP, excess ssDNA‐HRP, and remaining avidin–HRP was separated by MCE. The separations were performed at a separation voltage of +1.6 kV and were completed in less than 100 s. The HRP was used as catalytic labels to catalyze H2O2/o‐aminophenol reaction. Target DNA could be detected by the HRP‐catalyzed reduction with ED. With this protocol, the limits of quantification for the hybridization assay of 21‐ and 39‐mer DNA fragments were of 8×10?12 M and 1.2×10?11 M, respectively. The proposed method has been applied satisfactorily in the analysis of Escherichia coli genomic DNA. We selected the detection of PCR amplifications from the gene of E. coli to test the real applicability of our method. By using an asymmetric PCR protocol, we obtained ssDNA targets of 148 bp that could be directly hybridized by the single‐stranded probe and detected with ED.  相似文献   

2.
Hashimoto M  Barany F  Xu F  Soper SA 《The Analyst》2007,132(9):913-921
We have fabricated a flow-through biochip consisting of passive elements for the analysis of single base mutations in genomic DNA using polycarbonate (PC) as the substrate. The biochip was configured to carry out two processing steps on the input sample, a primary polymerase chain reaction (PCR) followed by an allele-specific ligation detection reaction (LDR) for scoring the presence of low abundant point mutations in genomic DNA. The operation of the device was demonstrated by detecting single nucleotide polymorphisms in gene fragments (K-ras) that carry high diagnostic value for colorectal cancers. The effect of carryover from the primary PCR on the subsequent LDR was investigated in terms of LDR yield and fidelity. We found that a post-PCR treatment step prior to the LDR phase of the assay was not essential. As a consequence, a thermal cycling microchip was used for a sequential PCR/LDR in a simple continuous-flow format, in which the following three steps were carried out: (1) exponential amplification of the gene fragments from genomic DNA; (2) mixing of the resultant PCR product(s) with an LDR cocktail via a Y-shaped passive micromixer; and (3) ligation of two primers (discriminating primer that carried the complement base to the mutation locus being interrogated and a common primer) only when the particular mutation was present in the genomic DNA. We successfully demonstrated the ability to detect one mutant DNA in 1000 normal sequences with the integrated microfluidic system. The PCR/LDR assay using the microchip performed the entire assay at a relatively fast processing speed: 18.7 min for 30 rounds of PCR, 4.1 min for 13 rounds of LDR (total processing time = ca. 22.8 min) and could screen multiple mutations simultaneously in a multiplexed format. In addition, the low cost of the biochip due to the fact that it was fabricated from polymers using replication technologies and consisted of passive elements makes the platform amenable to clinical diagnostics, where one-time use devices are required to eliminate false positives resulting from carryover contamination.  相似文献   

3.
Rapid identification of bovine materials in animal foodstuffs is essential for effective control of a potential source of bovine spongiform encephalophathy. A convenient polymerase chain reaction (PCR)-based assay was developed for detection and identification of a bovine-specific genomic DNA sequence in foodstuffs. Simultaneously the assay assessed the DNA quality of the experiment system by amplification of a highly conserved eucaryotic DNA region of the 18-S ribosomal gene, helping to check the reliability of the test result. The amplified bovine-specific PCR product was a genomic DNA fragment of lactoferrin, a low copy gene that was different from a commonly used bovine-specific mitochondria sequence for identification of bovine materials. The specificity of this method was confirmed by the absence of detectable homologous PCR product using reference foodstuff samples that lacked bovine-derived meat and bonemeals, or genomic DNA samples from vertebrates whose offals are commonly included in animal feeds. This method could detect the presence of bovine material in foodstuffs when the samples contained > 0.02% bovine-derived meat and bone meal. Furthermore, it was not affected by prolonged heat treatment. The specificity, convenience, and sensitivity of this method suggest that it can be used for the routine detection of bovine-derived materials.  相似文献   

4.
5.
Nucleic acid amplification tests (NAATs)integrated on a chip hold great promise for point-of-care diagnostics. Currently, nucleic acid (NA) purification remains time-consuming and labor-intensive, and it takes extensive efforts to optimize the amplification chemistry. Using selective electrokinetic concentration, we report one-step, liquid-phase NA purification that is simpler and faster than conventional solid-phase extraction. By further re-concentrating NAs and performing polymerase chain reaction (PCR) in a microfluidic chamber, our platform suppresses non-specific amplification caused by non-optimal PCR designs. We achieved the detection of 5 copies of M. tuberculosis genomic DNA (equaling 0.3 cell) in real biofluids using both optimized and non-optimal PCR designs, which is 10- and 1000-fold fewer than those of the standard bench-top method, respectively. By simplifying the workflow and shortening the development cycle of NAATs, our platform may find use in point-of-care diagnosis.  相似文献   

6.
We document the surprising result that single-stranded DNA adsorbs on negatively charged gold nanoparticles (Au-nps) with a rate that depends on sequence length and temperature. After ss-DNA adsorbs on Au-nps, we find that the particles are stabilized against salt-induced aggregation. These observations can be rationalized on the basis of electrostatics and form the basis for a colorimetric assay to identify specific sequences and single nucleotide polymorphisms on polymerase chain reaction (PCR)-amplified DNA. The assay is label-free, requires no covalent modification of the DNA or Au-np surfaces, and takes on the sensitivity of PCR. Most important, binding of target and probe takes place in solution where hybridization occurs in less than 1 min. As an example, we test PCR-amplified genomic DNA from clinical samples for single nucleotide polymorphisms (SNPs) associated with a fatal arrhythmia known as long QT syndrome.  相似文献   

7.
《Electroanalysis》2006,18(2):141-151
Molecular diagnostics of inherited neurodegenerative disorders such as fragile X syndrome, myotonic dystrophy or Friedreich ataxia (FRDA) is based on analysis of the length of trinucleotide repetitive sequences in certain loci of genomic DNA. The current methods employ PCR and electrophoretic determination of the amplified DNA fragment size. We have recently shown that length of a triplet repetitive DNA sequence can be determined using a double‐surface electrochemical technique involving multiple hybridization of the expanded triplet repeat with short labeled reporter probe (spanning several trinucleotides). Here we propose a single‐surface sensor employing an analogous principle. Target DNA (tDNA) is adsorbed onto surface of a carbon (pyrolytic graphite or screen‐printed) electrode. Biotin‐labeled reporter probe (RP) is hybridized with the immobilized tDNA followed by binding of streptavidin‐alkaline phosphatase (ALP) conjugate. The ALP catalyzes production of an electroactive indicator (1‐naphthol) which is detected voltammetrically on the same electrode. Signal resulting from this electrochemical enzyme‐linked DNA hybridization assay is normalized to the amount of tDNA immobilized at the transducer surface either by measuring intrinsic tDNA voltammetric response, or using electrochemical labeling of the tDNA with osmium tetroxide 2,2′‐bipyridine complex. Detection of (GAA)n?(TTC)n triplet repeat expansion in nanogram quantities of PCR‐amplified tDNAs, including amplicons of patients' genomic DNA, is demonstrated. We show that our technique allow differentiation between normal and pathological alleles of X25 gene related to the FRDA.  相似文献   

8.
9.
Nucleic acid amplification tests (NAATs)integrated on a chip hold great promise for point‐of‐care diagnostics. Currently, nucleic acid (NA) purification remains time‐consuming and labor‐intensive, and it takes extensive efforts to optimize the amplification chemistry. Using selective electrokinetic concentration, we report one‐step, liquid‐phase NA purification that is simpler and faster than conventional solid‐phase extraction. By further re‐concentrating NAs and performing polymerase chain reaction (PCR) in a microfluidic chamber, our platform suppresses non‐specific amplification caused by non‐optimal PCR designs. We achieved the detection of 5 copies of M. tuberculosis genomic DNA (equaling 0.3 cell) in real biofluids using both optimized and non‐optimal PCR designs, which is 10‐ and 1000‐fold fewer than those of the standard bench‐top method, respectively. By simplifying the workflow and shortening the development cycle of NAATs, our platform may find use in point‐of‐care diagnosis.  相似文献   

10.
The amplification‐ and enzyme‐free quantification of DNA at ultralow concentrations, on the order of 10–1000 targets, is highly beneficial but extremely challenging. To address this challenge, true detection signals must be reliably discriminated from false or noise signals. Herein, we describe the development of associating and dissociating nanodimer analysis (ADNA) as a method that enables a maximum number of detection signals to be collected from true target‐binding events while keeping nonspecific signals at a minimum level. In the ADNA assay for ultralow target concentrations, Au nanoprobes on a lipid micropattern were monitored and analyzed in situ, and newly defined dissociating dimers, which are eventually decoupled into monomers again, were incorporated into the detection results. Tens to thousands of DNA copies can be reliably quantified with excellent single‐base‐mismatch differentiation capability by this non‐enzymatic, amplification‐free ADNA method.  相似文献   

11.

As part of a multi-centre European project, FOOD-PCR, the feasibility of a novel approach for production of dried bacterial DNA that could be used as certified reference materials (CRM) was assessed. Selected strains of Salmonella typhimurium, Listeria monocytogenes, Escherichia coli O157, Campylobacter jejuni and Yersinia enterocolitica were used to produce genomic DNA (gDNA). These preparations gave support to method development for qualitative polymerase chain reaction (PCR) detection methods for food-borne pathogens. Purified gDNA was transformed into stable and dry gDNA by using polypropylene vials as carrier and applying a vacuum-drying technique. The gDNA preparations were shown to be sufficiently stable under ambient transport conditions without cooling and proved to have long-term stability at 5°C of at least 22 months. The dried DNA was easily reconstituted by addition of distilled water then gentle shaking. These studies have shown that production of stable and dry bacterial gDNA material is feasible and could help satisfy the increasing need for certified reference DNA positive control samples in the field of PCR testing for detection and verification of food-borne microbial pathogens.

  相似文献   

12.
A reliable PCR reference assay for relative genetically modified organism (GMO) quantification must be specific for the target taxon and amplify uniformly along the commercialised varieties within the considered taxon. Different reference assays for maize (Zea mays L.) are used in official methods for GMO quantification. In this study, we evaluated the reliability of eight existing maize reference assays, four of which are used in combination with an event-specific polymerase chain reaction (PCR) assay validated and published by the Community Reference Laboratory (CRL). We analysed the nucleotide sequence variation in the target genomic regions in a broad range of transgenic and conventional varieties and lines: MON 810 varieties cultivated in Spain and conventional varieties from various geographical origins and breeding history. In addition, the reliability of the assays was evaluated based on their PCR amplification performance. A single base pair substitution, corresponding to a single nucleotide polymorphism (SNP) reported in an earlier study, was observed in the forward primer of one of the studied alcohol dehydrogenase 1 (Adh1) (70) assays in a large number of varieties. The SNP presence is consistent with a poor PCR performance observed for this assay along the tested varieties. The obtained data show that the Adh1 (70) assay used in the official CRL NK603 assay is unreliable. Based on our results from both the nucleotide stability study and the PCR performance test, we can conclude that the Adh1 (136) reference assay (T25 and Bt11 assays) as well as the tested high mobility group protein gene assay, which also form parts of CRL methods for quantification, are highly reliable. Despite the observed uniformity in the nucleotide sequence of the invertase gene assay, the PCR performance test reveals that this target sequence might occur in more than one copy. Finally, although currently not forming a part of official quantification methods, zein and SSIIb assays are found to be highly reliable in terms of nucleotide stability and PCR performance and are proposed as good alternative targets for a reference assay for maize.  相似文献   

13.
Presently, there is a growing interest in the development of lateral flow devices for nucleic acid analysis that enable visual detection of the target sequence (analyte) while eliminating several steps required for pipetting, incubation, and washing out the excess of reactants. In this paper, we present, for the first time, lateral flow tests exploiting oligonucleotide-functionalized and antibody-functionalized carbon nanoparticles (carbon nano-strings, CBNS) as reporters that enable confirmation of the target DNA sequence by hybridization. The CBNS reporters were applied to (a) the detection of PCR products and (b) visual genotyping of single nucleotide polymorphisms in human genomic DNA. Biotinylated PCR product was hybridized with a dA-tailed probe. In one assay configuration, the hybrid is captured at the test zone of the strip by immobilized streptavidin and detected by (dT) 30 -CBNS. In a second configuration, the hybrids are captured from immobilized (dA) strands and detected by antibiotin-CBNS. As low as 2.5 fmol of amplified DNA can be detected. For visual genotyping, allele-specific primers with a 5′ oligo(dA) segment are extended by DNA polymerase with a concomitant incorporation of biotin moieties. Extension products are detected either by (dT) 30 -CBNS or by antibiotin-CBNS. Only three cycles of extension reaction are sufficient for detection. No purification of the PCR products or the extension product is required.  相似文献   

14.
Metal nanoprobes have recently attracted board research interestinr their application in establishing sensing systems due to their unique optical, electrical, physical, and chemical properties. In comparison to gold and silver nanoprobes, analytical platform based on copper nanoprobes (Cu‐NPs) is still in the early stages of development. In this review, we focus on single‐stranded, and double‐stranded DNA capped Cu‐NPs sensing systems which have been designed for various analytes, including metal ions, anions, small molecules, biomolecules (DNA, RNA, and protein, etc.). In addition, the application of Cu‐NPs in biological labeling or bio‐imaging platforms has also been introduced and summarized.  相似文献   

15.
Wang J  Wang X  Li Y  Yan S  Zhou Q  Gao B  Peng J  DU J  Fu Q  Jia S  Zhang J  Zhan L 《Analytical sciences》2012,28(3):237-241
In the present study, we aimed to develop a nucleic acid lateral-flow method for the rapid and sensitive detection of multiple bacteria that contaminate platelet concentrations (PCs). Polymerase chain reaction (PCR) amplicons were produced by a set of board-range primers that recognize the conserved region of bacteria 16S rDNA, followed by hybridization with both an FITC (fluorescein isothiocyanate)-labelled probe and biotin-labelled probe, and then a nucleic acid lateral-flow dipstick (LFD) assay. The LFD accurately identified 7 species of bacteria, but had no cross-reactivity with human genomic DNA. The limit of detection (LOD) of the LFD assay was as low as 10(1) copies/μL of 16S rDNA for plasmid. In the case of spiked PCs without enrichment, the detection limit of LFD for K. pneumonia was 5 CFU/mL, 6.5 × 10(4) CFU/mL for the S. epidermidis and 35 CFU/mL for P. aeruginosa.  相似文献   

16.
Heparan sulfate (HS) represents a major class of glycans that perform central physiological functions. Emerging HS and glycosaminoglycan microarray techniques are used to interrogate the structure and function relationship to develop novel therapeutic agents. Availability of HS with specific sulfation patterns has been a limiting factor and impedes the accuracy of HS glycomics studies. Although organic synthesis provides oligosaccharides, these may not fully represent the biological functions of polysaccharides. Here, we present a study for developing an enzyme-based approach to synthesize a polysaccharide library with different sulfation patterns. Using different combinations of biosynthetic enzymes, we synthesized eight unique polysaccharides. We discovered that polysaccharides without the iduronic acid residue displayed strong binding affinity to antithrombin and high anti-Xa and anti-IIa activities. The enzyme-based synthetic approach could become a general method for discovering new HS structures with unique biological functions.  相似文献   

17.
We report a diagnostic method for Anaplasma phagocytophilum (A. phagocytophilum) infection in cattle using a nested PCR and microchip electrophoresis (ME). A. phagocytophilum causes human granulocytic anaplasmosis and granulocytic ehrlichiosis, which are emerging tick‐borne zoonotic diseases. Nested PCR was used to amplify genomic DNA samples extracted from cattle blood. The amplified PCR products were analyzed under a sieving gel matrix of 0.7% poly(ethyleneoxide) (Mr=8 000 000) in a conventional glass microchip. In the ME assay, A. phagocytophilum was analyzed within 35 s with a relative standard deviation of 1.30% (n=5) using a programmed field strength gradient (PFSG) as follows: 615.3 V/cm for 0–24 s, 66.7 V/cm for 24–34 s, 615.3 V/cm for 34–100 s. The ME‐PFSG assay was clinically validated by comparing the 16S rRNA gene levels obtained by this method with those measured using conventional slab gel electrophoresis performed with ten cattle blood samples suspected of A. phagocytophilum infection. In contrast to slab gel electrophoresis, the proposed ME‐PFSG methodology had increased sensitivity (200–450 pg/μL), a faster analysis time (<35 s), and required a smaller sample volume (~162 fL).  相似文献   

18.
In the present study, restriction site‐amplified polymorphism (RSAP) markers were used to examine the genetic variability of Schistosoma japonicum isolates from different endemic provinces in mainland China. Of the 45 pairs of primers screened, 10 RSAP markers showed a clear banding pattern with good resolution; however, only six exhibited a polymorphism among different isolates. Among six RSAP markers, one pair of primers (R8+R10) was able to differentiate male and female parasites, and amplified one constant specific band for female S. japonicum isolates. The specific band was recovered, re‐amplified and sequenced, and a sequence of 162 bp was obtained. Based on this sequence, a pair of specific primers was designed and used to develop sequence characterized amplified region (SCAR)‐PCR assay for identification and differentiation of female S. japonicum isolates. The SCAR‐PCR assay allowed the specific identification of female S. japonicum, with no amplicons being amplified from male S. japonicum, Fasciola hepatica, Clonorchis sinensis, S. mansoni (male and female parasite). DNA sequencing confirmed the identity of the amplified products. The minimum amount of DNA detectable using SCAR‐PCR assay was 0.3 ng for female S. japonicum. The SCAR‐PCR was able to differentiate effectively the male and female S. japonicum worms collected from 12 geographical origins in eight endemic provinces, the gender of which was known based on the morphological and biological features. These results showed that SCAR‐PCR provides an effective tool for the sex differentiation studies of S. japonicum, identification of female S. japonicum, diagnosis and epidemiological survey of S. japonicum infections in animals and human.  相似文献   

19.
Single nucleotide polymorphisms (SNPs) are one of the most common markers in mammals. Rapid, accurate, and multiplex typing of SNPs is critical for subsequent biological and genetic research. In this study, we have developed a novel method for multiplex genotyping SNPs in mice. The method involves allele‐specific PCR amplification of genomic DNA with two stem‐loop primers accompanied by two different universal fluorescent primers. Blue and green fluorescent signals were conveniently detected on a DNA sequencer. We verified four SNPs of 65 mice based on the novel method, and it is well suited for multiplex genotyping as it requires only one reaction per sample in a single tube with multiplex PCR. The use of universal fluorescent primers greatly reduces the cost of designing different fluorescent probes for each SNP. Therefore, this method can be applied to many biological and genetic studies, such as multiple candidate gene testing, genome‐wide association study, pharmacogenetics, and medical diagnostics.  相似文献   

20.
In this paper we describe a multiplex time-reducing quantitative polymerase chain reaction (qPCR) method for determination of telomere length. This multiplex qPCR assay enables two pairs of primers to simultaneously amplify telomere and single copy gene (albumin) templates, thus reducing analysis time and labor compared with the previously established singleplex assay. The chemical composition of the master mix and primers for the telomere and albumin were systematically optimized. The thermal cycling program was designed to ensure complete separation of the melting processes of the telomere and albumin. Semi-log standard curves of DNA concentration versus cycle threshold (C t) were established, with a linear relationship over an 81-fold DNA concentration range. The well-performed intra-assay (RSD range 2.4–4.7%) and inter-assay (RSD range: 3.1–5.0%) reproducibility were demonstrated to ensure measurement stability. Using wild-type, Lewis lung carcinoma and H22 liver carcinoma C57BL/6 mouse models, significantly different telomere lengths among different DNA samples were not observed in wild-type mice. However, the relative telomere lengths of the tumor DNA in the two strains of tumor-bearing mice were significantly shorter than the lengths in the surrounding non-tumor DNA of tumor-bearing mice and the tissue DNA of wild-type mice. These results suggest that the shortening of telomere lengths may be regarded as an important indicator for cancer control and prevention. Quantification of telomere lengths was further confirmed by the traditional Southern blotting method. This method could be successfully used to reduce the time needed for rapid, precise measurement of telomere lengths in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号