首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a useful technique for the identification of bacteria on the basis of their characteristic protein mass spectrum fingerprint. Highly standardized instrumental analytical performance and bacterial culture conditions are required to achieve useful information. A chemometric approach based on multivariate analysis techniques was developed for the analysis of MALDI data of different bacteria to allow their identification from their fingerprint. Principal component analysis, linear discriminant analysis (LDA) and soft independent modelling of class analogy (SIMCA) were applied to the analysis of the MALDI MS mass spectra of two pathogenic bacteria, Escherichia coli O157:H7 and Yersinia enterocolitica, and the non-pathogenic E. coli MC1061. Spectra variability was assessed by growing bacteria in different media and analysing them at different culture growth times. After selection of the relevant variables, which allows the evaluation of an m/z value pattern with high discriminant power, the identification of bacteria by LDA and SIMCA was performed independently of the experimental conditions used. In order to better evaluate the analytical performance of the approach used, the ability to correctly classify different bacteria, six wild-type strains of E. coli O157:H7, was also studied and a combination of different chemometric techniques with a severe validation was developed. The analysis of spiked bovine meat samples and the agreement with an independent chemiluminescent enzyme immunoassay demonstrated the applicability of the method developed for the detection of bacteria in real samples. The easy automation of the MALDI method and the ability of multivariate techniques to reduce interlaboratory variability associated with bacterial growth time and conditions suggest the usefulness of the proposed MALDI MS approach for rapid routine food safety checks. Figure Workflow of the developed MALDI-TOF MS and chemometric approach for the analysis and classification of bacteria Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize.  相似文献   

3.
The recent development of high-throughput proteomic technologies has given us new methods to analyze how an organism responds to changes in its nutritional environment. The analysis of plasma samples by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was investigated as a novel approach to the identification of new biomarkers of nutrient status. Pre-fractionation of rat plasma by anion-exchange chromatography in 96-well filter plates markedly increased the total number of unique peptides and proteins that could be observed in SELDI-TOF mass spectra. Replicate fractionations generated nearly identical pH fractions, not only in terms of peptide and protein composition but also in respect to the ion signal intensity of replicate SELDI-TOF mass spectra. The feasibility of this approach was tested with samples from retinol-sufficient and retinol-deficient rats. The comparative analysis revealed reduced levels of three proteins with molecular masses between 10,000 and 20,000 in plasma of retinol-deficient rats. These results demonstrate that plasma profiling by anion-exchange fractionation and SELDI-TOF-MS may be a promising surveillance tool to detect changes in nutritional status and whole body physiology.  相似文献   

4.
The automated use of a matrix-assisted laser desorption ionization (MALDI) mass spectrometer (MS) is described for image analysis of samples through implementation of new software for instrument control, data acquisition, and data analysis. The software permits automated acquisition of MS MALDI spectra to form an ordered data array and contains display features to provide images at one or more mass-to-charge ratio values. The technique can be used to scan tissue samples, blotted samples, gels, or other sample surfaces where the image analysis of that sample is required. The program achieves a time of typically 1 s per image point, permitting an analysis made up of large numbers of points with high spatial resolution up to 850 dpi. The features of the software are demonstrated in this paper with samples of printed images, where visible images can be compared to those obtained by mass spectrometry. Quantitative aspects are introduced by analyzing a series of sample spots containing different amounts of several proteins.  相似文献   

5.
The identification of isoforms is one of the great challenges in proteomics due to the large number of identical amino acids preventing their separations by two-dimensional electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become a rapid and sensitive tool in proteomics, notably with the new instrumental improvements. In this study, we used several acquisition modes of MALDI-TOFMS to identify isoforms of porcine glutathiones S-transferase. The use of multiple proteases coupled to the different acquisition modes of MALDI-TOFMS (linear, reflectron, post-source decay (PSD) and in-source decay, positive and negative modes) allowed the identification of two sequences. Moreover, a third sequence is pointed out from a PSD study of a tryptic ion revealing the modification of the amino acid tyrosine 146 to phenylalanine.  相似文献   

6.
We have employed a light-absorbing electrically conductive polymer as a matrix to determine the molecular mass of small organic molecules using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. This method, which is in contrast to the usual MALDI strategy for matrix selection in which a small molecule matrix is used with a high molecular mass analyte, addresses the problem of matrix interference which limits the usefulness of MALDI-TOF for small molecule analysis. Use of negative ion mode offers advantages for this application. Using this approach, we have obtained clean molecular ion mass spectra of small organic molecules in the mass range 100-300 Da.  相似文献   

7.
Chemical degradation methods combined with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and post-source decay (PSD)-MALDI reflex TOF mass spectrometry (MS) were used to determine the sequence of a peptide branched on to a known peptide backbone. This study was applied to a branched peptide model (derivative of substance P). The branched peptide mimics a digest of a membrane receptor on to which a derivative of substance P was photochemically linked. Chemical degradation based on N-terminal ladder sequencing in combination with MALDI-TOF-MS gave only partial sequence information. Although single PSD mass spectra still remain difficult to interpret unambiguously, PSD-MALDI-TOF-MS was combined with on-target acetylation and H -- D exchange to give a better and successful approach to the unambiguous determination of the complete amino acid side-chain sequence. This study shows the capability of MALDI-TOF-MS to help in characterizing ligand-receptor interactions.  相似文献   

8.
A method for the direct determination of alkaloid profiling in plant tissues by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was developed. The alkaloid profiles of the herbs were obtained without the need for complicated sample preparation. Experimental results demonstrated that the direct MALDI-TOFMS analysis allowed rapid and reliable characterization of the components in plant tissues. Four commonly used Chinese medicinal herbs were studied, including Aconitum Carmichaeli Debx. (Fuzi in Chinese) and Processed Fuzi, for herb differentiation and explanation of the significant difference in their toxicities. The direct analysis method proved valuable for the preliminary study of plant component profiles. The rapid collection of information from the direct analysis on plant tissues could be valuable for supporting the discovery of new compounds and for the quality control of medicinal herbs.  相似文献   

9.
The trend of miniaturization in bioanalytical chemistry is shifting from technical development to practical application. In matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), progress in miniaturizing sample spots has been driven by the needs to increase sensitivity and speed, to interface with other analytical microtechnologies, and to develop miniaturized instrumentation.We review recent developments in miniaturizing sample spots for MALDI-MS. We cover both target modification and microdispensing technologies, and we emphasize the benefits with respect to sensitivity, throughput and automation.We hope that this review will encourage further method development and application of miniaturized sample spots for MALDI-MS, so as to expand applications in analytical chemistry, protein science and molecular biology.  相似文献   

10.
In the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis of various compounds synthesized in our laboratory, strong [M - H]+ ion peaks were often observed for the molecules with tertiary amino groups. In this work, the MALDI TOF MS behavior of two groups of compounds that incorporate tertiary amino moieties was investigated. One group is bisurea dimethylanilines (BUDMAs) prepared for the study of molecular recognition in thermoplastic elastomers, and the other group is the poly(propylene imine) diaminobutane dendrimers. The results clearly demonstrate the appearance of the [M - H]+ ions. In order to understand the possible mechanisms for the generation of these ions, a series of model compounds, ranging from primary to tertiary amines, were investigated. Unlike the tertiary amines, no [M - H]+ ion peaks were recorded for the primary amines, and only barely detectable ones, if any, for some secondary amines. It appears that the tertiary amino groups play an important role in the formation of these ions. In addition to MALDI TOF MS analysis, these samples were also applied to electrospray ionization (ESI) MS where no [M - H]+ ions were observed. The results indicate that the generation of [M - H]+ ion is due to the unique MALDI conditions and is likely to be formed via dehydrogenation of a protonated tertiary amine resulting in an N=C double bond. The absence of [M - H]+ ion peaks for the primary and secondary amines is probably because upon their formation these ions could easily transfer one proton to the corresponding amines in the MALDI gas-phase plume, yielding neutral imines that cannot be detected by MS.  相似文献   

11.
12.
The application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to the analysis of blood serum leads to the observation of a large variety of reproducible mass spectral peaks corresponding to blood components. In this study, the use of MALDI-TOFMS was developed as a tool for monitoring immune response to bacterial infection. Employing the MALDI-TOFMS approach, the levels of many components of blood were found to be immune response independent whereas others were found to correlate directly with the response of the immune system to two known types of bacteria (Staphylococcus aureus and Enterococcus faecalis). The methodologies reported here should be useful for the rapid monitoring of blood, especially that of the immune response mechanisms in various animal species.  相似文献   

13.
The detection of water-soluble vitamins B(1), B(2), B(6), B(12) and C by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) was attempted by studying 17 porphyrin matrices. Comparative studies of porphyrin matrices, useful mass spectral window, matrix/analyte molar ratio (M/A), ultraviolet-visible absorption characteristics and quantitative results were made. Most porphyrin matrices provide a useful mass spectral window in the low-mass range. The optimal M/A increases with increasing molecular mass of the vitamin. Vitamin B(12) possesses the highest molecular mass and requires a higher M/A. The presence of hydroxyl or carboxyl groups in the porphyrin is an indicator of a useful MALDI matrix. Vitamins B(2) and B(6) were readily ionized upon irradiation with a 337 nm laser without the use of any porphyrin matrix. Improved linearity and sensitivity of the calibration curves were obtained with samples prepared with a constant M/A. The limits of detection and quantitation are at the picomole level. The results indicate that MALDI-TOFMS with porphyrin matrices is a rapid and viable technique for the detection of low molecular mass water-soluble vitamins.  相似文献   

14.
Tetrathiofulvalene compounds are important components of charge-transfer complexes, which may be applied in various fields of scientific research and practical applications. Some of these compounds cannot be characterized by mass spectrometry. Here, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for the characterization of tetrathiofulvalenes. The samples could be easily desorbed and ionized to form singly charged ions, and mass spectra with isotopic resolution readily obtained. The mass spectrometric results for 26 compounds have shown that MALDI-TOF is more effective and convenient than other mass spectrometry methods, and resolves the problem of mass spectrometric characterization of tetrathiofulvalene compounds.  相似文献   

15.
In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability.  相似文献   

16.
We report a study of the application of delayed extraction (DE) to infrared-wavelength matrix-assisted time-of-flight mass spectrometry (IR-MALDI-TOF-MS) of proteins. The shapes of the spectral peaks obtained with DE-IR-MALDI-MS are compared with those obtained from the same samples and matrix using continuous extraction (CE) IR-MALDI-MS. Application of DE results in significant improvements in the peak resolution, revealing spectral features (in proteins with molecular masses <12 kDa) that were not resolved in the corresponding CE-IR-MALDI mass spectra. Particularly significant is a series of peaks on the high mass side of the protonated protein peaks that arise through replacement of protons by adventitious sodium ions in the sample. We deduced that these sodium replacement species are a significant contributer to the broad tails (and resulting peak asymmetries) that are a feature of the DE-IR-MALDI mass spectra of proteins with molecular masses ≥17 kDa. The peak width reduction observed in IR-MALDI by DE suggests that, as in UV-MALDI, the initial velocity distribution for ions produced in the MALDI process contributes to the peak broadness in the CE mass spectra. In a systematic comparison between DE UV-MALDI and DE IR-MALDI, we determined that photochemical matrix adduction is present in UV-MALDI but absent in IR-MALDI. In addition, we find that protein ions produced by IR irradiation are less internally excited (i.e., cooler), exhibiting less fragmentation, more Na+ replacement and/or unspecified noncovalent adduction, and more heme adduction with apomyoglobin. Thus, IR-MALDI appears to be a softer means for producing gas-phase protein ions than is UV-MALDI. It will be of considerable practical interest to determine whether large protein ions produced by IR-MALDI are sufficiently cool to survive transport through reflecting TOF mass spectrometers (without loss of small neutral species such as H2O, NH3, and CO2) and the extended time periods required for detection by quadrupole ion trap and Fourier transform ion cyclotron resonance mass analyzers.  相似文献   

17.
Some experimental factors affecting the resolution in glycerol infrared matrix-assisted laser desorption/ionization (IR-MALDI) time-of-flight (TOF) mass spectrometry were investigated. Loading the sample inside a cavity covered with a grid was found to improve the resolving power as reported previously, although not to the extent attainable in UV-MALDI using the same instrument. The resolving power improved as the laser spot area at the sample position got larger, becoming almost comparable with that in UV-MALDI when the spot area was a little larger than the cavity size. Reduced concentration of the ablated materials in the acceleration region with the use of the grid and large irradiation area may be responsible for the enhanced resolution. In addition, the threshold laser fluences measured in this work were lower than those reported in the literature and tended to decrease more rapidly as the irradiation area increased than predicted previously. The implication of similar threshold fluences for matrix and analyte ions is discussed in relation to the analyte ion formation mechanism.  相似文献   

18.
C(alpha)-Formylglycine, the catalytic amino acid residue in the active site of sulfatases, is generated by post-translational modification of a cysteine or serine residue. We describe a highly sensitive procedure for the detection of C(alpha)-formylglycine-containing peptides in tryptic digests of sulfatase proteins. The protocol is based on the formation of hydrazone derivatives of C(alpha)-formylglycine-containing peptides when using dinitrophenylhydrazine as a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The hydrazone derivatives desorb and ionize with high efficiency and can be detected in the sub-femtomole range. The presence of C(alpha)-formylglycine is indicated by a mass increment of 180.13 u, corresponding to the hydrazone moiety, and also by a unique C-terminal fragment ion, characteristic of sulfatases, that becomes prominent in MALDI post-source decay mass spectra of the hydrazone derivatives.  相似文献   

19.
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry is generally considered to be a surface analysis technique. In this report, the profiling depth of imaging mass spectrometry was examined. MALDI matrix solution was found to be able to gain access to the tissue interior and extract analyte molecules to the tissue surface. As a consequence, prazosin, a small molecule pharmaceutical compound, located as deep as 40 microm away from the surface was readily detected after matrix application. Likewise, cytochrome c, a 12 kDa protein, was also detectable from the tissue interior. Moreover, for prazosin, not only the extent of matrix effect, but also the extraction efficiency of the matrix solvent appeared to be dependent on the type of tissue. These results indicated that experimental conditions that decrease the matrix solvent evaporation during matrix application may increase analyte extraction efficiency and hence sensitivity of the analysis. Furthermore, thin sections should be used to avoid differential extraction efficiency of matrix solvent in different tissues for whole-body analysis.  相似文献   

20.
A prototype matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI-TOF) tandem mass spectrometer was used to sequence a series of phosphotyrosine-, phosphothreonine- and phosphoserine-containing peptides. The high mass resolution and mass accuracy of the instrument allowed the localization of one, three or four phosphorylated amino acid residues in phosphopeptides up to 3.1 kDa. Tandem mass spectra of two different phosphotyrosine peptides permitted amino acid sequence determination and localization of one and three phosphorylation sites, respectively. The phosphotyrosine immonium ion at m/z 216.04 was observed in these MALDI low-energy CID tandem mass spectra. Elimination of phosphate groups was evident from the triphosphorylated peptide but not from the monophosphorylated species. The main fragmentation pathway for the synthetic phosphothreonine-containing peptide and for phosphoserine-containing peptides derived from beta-casein and ovalbumin was the beta-elimination of phosphoric acid with concomitant conversion of phosphoserine to dehydroalanine and phosphothreonine to 2-aminodehydrobutyric acid. Peptide fragment ions of the b- and y-type allowed, in all cases, the localization of phosphorylation sites. Ion signals corresponding to (b-17), (b-18) and (y-17) fragment ions were also observed. The abundant neutral loss of phosphoric acid (-98 Da) is useful for femtomole level detection of phosphoserine-peptides in crude peptide mixtures generated by gel in situ digestion of phosphoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号