首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
偏最小二乘-近红外漫反射光谱法测定西米替丁药片   总被引:4,自引:0,他引:4  
研究了应用偏最小二乘法(PLS)同近红外漫反射光谱法结合,对西米替丁片剂药品进行无损非破坏定量分析,建立了最佳的数学校正模型。讨论了波长间隔和主成分数对PLS定量预测能力的影响,预测了未知样品。  相似文献   

2.
Li J  Zhang Y  Cai W  Shao X 《Talanta》2011,84(3):679-683
Analysis of metal ions in environment is of great importance for evaluating the risk of heavy metal to public health and ecological safety. A method for simultaneous determination of metal ions in water samples was developed by using adsorption preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). A high capacity adsorbent of thiol-functionalized magnesium phyllosilicate, named Mg-MTMS, was prepared by co-condensation for preconcentration of Hg2+, Pb2+ and Cd2+ in aqueous solutions. After adsorbing the analytes onto the adsorbent, NIRDRS was measured and PLS models were established for fast and simultaneous quantitative prediction. Because the interaction of the ions with the functional group of the adsorbent can be reflected in the spectra, the models built with the samples prepared by river water were proven to be efficient enough for precise prediction. The determination coefficients (R2) of the validation samples for the three ions were found as high as 0.9197, 0.9599 and 0.9861, respectively. Furthermore, because the high adsorption efficiency of Mg-MTMS, the detected concentrations are as low as milligrams per liter for the three ions, and the concentration can be further reduced. Therefore, the feasibility of quantitative analysis metal ions in river water by NIRDRS is proven and this may provide a new way for fast simultaneous determination of trace metals in environmental waters.  相似文献   

3.
Visible (Vis) and near-infrared reflectance (NIR) spectroscopy combined with chemometrics was explored as a tool to trace muscles from autochthonous and crossbreed pigs from Uruguay. Muscles were sourced from two breeds, namely, the Pampa-Rocha (PR) and the Pampa-Rocha x Duroc (PRxD) crossbreed. Minced muscles were scanned in the Vis and NIR regions (400–2,500 nm) in a monochromator instrument in reflectance. Principal component analysis (PCA), discriminant partial least square regression (DPLS), linear discriminant analysis (LDA) based on PCA scores and soft independent modelling of class analogy (SIMCA) were used to identify the origin of the muscles based on Vis and NIR data. Full cross validation was used as validation method when classification models were developed. DPLS correctly classified 87% of PR and 78% of PRxD muscle samples. LDA calibration models correctly classified 87 and 67% of muscles as PR and PRxD, respectively. SIMCA correctly classified 100% of PR muscles. The results demonstrated the usefulness of Vis and NIR spectra combined with chemometrics as rapid method for authentication and identification of muscles according to the breed of pig.  相似文献   

4.
Nan Sheng 《Talanta》2009,79(2):339-683
Near-infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool and used in various fields, it is seldom, however, used in the analysis of metal ions in solutions. A method for quantitative determination of metal ions in solution is developed by using resin adsorption and near-infrared diffuse reflectance spectroscopy (NIRDRS). The method makes use of the resin adsorption for gathering the analytes from a dilute solution, and then NIRDRS of the adsorbate is measured. Because both the information of the metal ions and their interaction with the functional group of resin can be reflected in the spectrum, quantitative determination is achieved by using multivariate calibration technique. Taking copper (Cu2+), cobalt (Co2+) and nickel (Ni2+) as the analyzing targets and D401 resin as the adsorbent, partial least squares (PLS) model is built from the NIRDRS of the adsorbates. The results show that the concentrations that can be quantitatively detected are as low as 1.00, 1.98 and 1.00 mg L−1 for Cu2+, Co2+ and Ni2+, respectively, and the coexistent ions do not influence the determination.  相似文献   

5.
Nowadays, near-infrared spectroscopy chemical imaging (NIR-CI) has been widely used in pharmaceutical analysis since it provides important surface information about the samples. In this work the information of NIR-CI at the pixel level was compared through calculation of the similarity between distribution maps of concentration obtained by different multivariate calibration approaches. The comparison was performed by using four different multivariate methods (MCR, MLR, CLS and PLS) in analysis of carbamazepine pharmaceutical formulations. For global determination, all models developed showed RMSEP below 1.9% (w/w) for active principal ingredient (API) and better than 4.6% (w/w) for excipients. Also, the distribution maps obtained by PLS, CLS and MCR showed great similarity for all compounds of the formulation as well with concentrations in the tablets. However, comparing the distribution maps obtained by MLR with those from the other chemometric tools, a lower similarity was observed. Thus, this fitted model does not ensure, by itself, that the images obtained are reliable or accurate. The paper also compares the distribution maps of concentrations obtained from all constituents present in the pharmaceutical formulation with their respective micrographs.  相似文献   

6.
Quantitative determination of serum triglycerides was achieved in diffuse reflectance mode using silver mirror as the substrate to enhance the spectral features.  相似文献   

7.
The acid-catalysed esterification of myristic acid with isopropanol was studied by using near-infrared spectroscopy (NIR) in combination with soft-modeling curve resolution (MCR) methodology with a view to establishing the effect of experimental variables on the reaction kinetics. The reaction was conducted at temperatures above the boiling point of the alcohol, with continuous addition of an isopropanol/water mixture to the reactor. Spectral and concentration profiles were determined by applying soft-modeling curve resolution methodology to a column-wise augmented data matrix containing the spectra for the pure components. MCR profiles were compared with reference values and found to depart from then by less than 3% as %RSE for concentrations and to exhibit correlation above 0.999 for spectra.The reaction kinetics as estimated from the concentration profiles was found to be pseudo-first-order. Also, the pseudo-first-order rate constant was found to depend on the flow-rate of the isopropanol/water mixture and its water content; although the constant decreased with increase in the proportion of water, a content of ca. 15% could be used without important retarding effects on the kinetics. The proposed NIR-MCR method allows the rate constant and the influence of the initial water content to be determined with a view to minimizing consumption of the raw materials and optimizing the experimental conditions.  相似文献   

8.
The sequential injection (SIA) technique was applied for the on-line preparation of an “oil in water” microemulsion and for the determination of aluminum in new and used lubricating oils by electrothermal atomic absorption spectrometry (ET AAS) with Zeeman-effect background correction. Respectively, 1.0, 0.5 and 1.0 ml of surfactants mixture, sample and co-surfactant (sec-butanol) solutions were sequentially aspirated to a holding coil. The sonication and repetitive change of the flowing direction improved the stability of the different emulsion types (oil in water, water in oil and microemulsion). The emulsified zone was pumped to fill the sampling arm of the spectrometer with a sub-sample of 200 μl. Then, 10 μl of this sample solution were introduced by means of air displacement in the graphite tube atomizer. This sequence was timed to synchronize with the previous introduction of 15 μg of Mg(NO3)2 (in a 10 μl) by the spectrometer autosampler. The entire SIA system was controlled by a computer, independent of the spectrometer. The furnace program was carried out by employing a heating cycle in four steps: drying (two steps at 110 and 130 °C), pyrolisis (at 1500 °C), atomization (at 2400 °C) and cleaning (at 2400 °C). The calibration graph was linear from 7.7 to 120 μg Al l−1. The characteristic mass (mo) was 33.2 pg/0.0044 s and the detection limit was 2.3 μg Al l−1. The relative standard (RSD) of the method, evaluated by replicate analyses of different lubricating oil samples varied in all cases between 1.5 and 1.7%, and the recovery values found in the analysis of spiked samples ranged from 97.2 to 100.4%. The agreement between the observed and reference values obtained from two NIST Standard Certified Materials was good. The method was simple and satisfactory for determining aluminum in new and used lubricating oils.  相似文献   

9.
The simultaneous analysis of a ternary mixture containing paracetamol (PAR), phenylephrine hydrochloride (PHE), and chlorpheniramine maleate (CPM) was conducted without prior separation and using an advanced spectrophotometric method. The H-point standard addition and absorbance correction methods were selected to determine the compounds, which are highly overlapped spectra in pharmaceutical formulations. The method is based on the use of three different wavelengths of 296, 272, and 227 nm for the ternary mixture. The concentration of PAR was calculated directly at 296 nm because no interferences existed. Absorbance correction method was used to remove the role of PAR at 272 and 227 nm. The concentrations of the PHE and CPM compounds in the mixture were determined by using the H-point standard addition method. The results showed that simultaneous determination of PAR, PHE, and CPM could be conducted within the range of 1–33 μg/mL, 1–23 μg/mL, and 1–36 μg/mL, respectively. The relative standard deviations for the simultaneous determination of PHE, CPM, and PAR were 0.617, 2.76, and 1.71, respectively. The proposed method was implemented successfully for the simultaneous determination of PAR, PHE, and CPM in pharmaceutical formulations.  相似文献   

10.
Wastes and by-products of the onion-processing industry pose an increasing disposal and environmental problem and represent a loss of valuable sources of nutrients. The present study focused on the production of vinegar from worthless onions as a potential valorisation route which could provide a viable solution to multiple disposal and environmental problems, simultaneously offering the possibility of converting waste materials into a useful food-grade product and of exploiting the unique properties and health benefits of onions. This study deals specifically with the second and definitive step of the onion vinegar production process: the efficient production of vinegar from onion waste by transforming onion ethanol, previously produced by alcoholic fermentation, into acetic acid via acetic fermentation. Near-infrared spectroscopy (NIRS), coupled with multivariate calibration methods, has been used to monitor the concentrations of both substrates and products in acetic fermentation. Separate partial least squares (PLS) regression models, correlating NIR spectral data of fermentation samples with each kinetic parameter studied, were developed. Wavelength selection was also performed applying the iterative predictor weighting–PLS (IPW-PLS) method in order to only consider significant spectral features in each model development to improve the quality of the final models constructed. Biomass, substrate (ethanol) and product (acetic acid) concentration were predicted in the acetic fermentation of onion alcohol with high accuracy using IPW-PLS models with a root-mean-square error of the residuals in external prediction (RMSEP) lower than 2.5% for both ethanol and acetic acid, and an RMSEP of 6.1% for total biomass concentration (a very satisfactory result considering the relatively low precision and accuracy associated with the reference method used for determining the latter). Thus, the simple and reliable calibration models proposed in this study suggest that they could be implemented in routine applications to monitor and predict the key species involved in the acetic fermentation of onion alcohol, allowing the onion vinegar production process to be controlled in real time.  相似文献   

11.
A novel strategy for implementing the automatic standard addition method (SAM) is described. By using a flow-batch system that presents the intrinsic favourable characteristics of the flow and batch techniques, the proposed strategy performs fast standard additions with sufficient flexibility and versatility and employs only one standard solution per analyte. To calculate the analyte concentration, a mathematical model based on a classical SAM and flow variables of the system was developed. The proposed flow-batch SAM was applied to copper determination by flame atomic absorption spectrometry (AAS) in sugar cane-made alcoholic beverages, known as “Cachaça”, available in Brazil. A SAM has been recommended for these analyses because “Cachaças” presents a significantly different composition causing matrix effects and copper determination by calibration using matrix-matching standards can yield inaccurate results. The results show good agreement between the obtained values with the proposed flow-batch SAM and a manual SAM. The mean relative errors and overall standard deviations were always <1.0% (n=6) and 0.2 mg l−1, respectively, for 1.0-7.0 mg l−1 Cu. By using five standard addition levels, the sample throughput was 70 h−1 and the consumption of sample and standard solution were 1.5 and 0.5 ml per analysis, respectively.  相似文献   

12.
Due to the lack of proper standard materials for airborne particulate matter collected on filters, a validation scheme was developed, which is here described, to the aim of testing the application of leaching procedures performing both ions and elemental determinations on real samples of airborne particulate matter collected on filters. The scheme has been developed on a two-step leaching method (extraction in acetate buffer and acid dissolution of residue) previously developed by authors and consists of two series of tests to be run on n pairs of equivalent parallel samples filter-collected. The first series of tests aims to assess on real samples the equivalence between results obtained by the tested procedure with those obtained by the EMEP ions extraction and the EN 12341 standard methods, whereas the second aims to evaluate the reproducibility of analytical results of elemental determination in the leached and dissolved fractions; in the latter case data reliability is also evaluated as a function of the environment-intrinsic variability of real samples.To avoid errors due to sampling differences data from filter pairs were standardized both by gravimetric determination of loaded filters, according to the EN 12341 standard and by the rate [SO42−]A/[SO42−]B, where [SO42−] indicate the soluble sulphate concentration in the extract; in the latter case values improved for all elements and in both fractions. Results of equivalence with standard methods and reproducibility tests are evaluated as mean relative percentage differences (Δ%) and percentage elements recoveries (R%). The application of the validation scheme to the two-step leaching method is here discussed for non-volatile ions and for 17 elements detected on 22 pairs of low-volume collected PM10 samples on Teflon filters.  相似文献   

13.
For simultaneous determination in conditions with spectral overlap and variation of matrix effects, coupling of the generalized standard addition method (GSAM) with the multivariate nonlinear method of radial basis function–partial least squares (RBF–PLS) was proposed. The nonlinearity caused by the GSAM used to correct matrix effects was studied, and principal component analysis was proposed for identifying it. In the method introduced, the whole sensor range can be used without the collinearity problem encountered in the application of GSAM with classical least squares (CLS), and calibration can be made for each analyte, separately. The introduced method was applied to determine amlodipine and atorvastatin in urine samples. The mean of the percent recoveries was between 95 and 101.12. The percent relative standard deviation values of the method were in most cases below 5%. The results of GSAM–RBF–PLS were compared with those obtained by GSAM–CLS and GSAM–PLS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A predominantly trans‐1,2‐disubstituted ethane system – N,N,N‐trimethyl‐(3,3‐dimethylbutyl)ammonium iodide – is of particular interest for conformational analysis, because it contains both an organic and a highly polar substituent, making it soluble and thus applicable to study in a large variety of solvents. The fraction of the trans conformer of this molecule in a wide range of protic and aprotic solvents was determined by the nuclear magnetic resonance proton couplings to be approximately 90%, in contrast to the previously assumed 100%. The consistently strong preference of the trans conformation should establish N,N,N‐trimethyl‐(3,3‐dimethylbutyl)ammonium iodide as a possibly useful ‘trans‐standard’ in conformational analysis, much more so than 1,2‐ditert‐butylethane, which has a poor solubility in many solvents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Soil samples collected in the surroundings of a chlor-alkali plant in the Netherlands were characterised by synchrotron-based techniques and conventional analytical procedures, in order to evaluate the environmental impact of Hg emissions and other heavy metals present in these locations. Analysis of total metal content by inductively coupled plasma-optical spectroscopy (ICP-OES) revealed a heterogeneous contamination of Hg, with concentrations ranging from 4.3 to 1150 μg g−1. In addition, significant concentrations of Cu, Ni, Pb, Zn, Mn and principally Fe were also identified within the studied samples. Direct determination of mercury species by X-ray absorption near edge spectroscopy (XANES) showed inorganic Hg compounds to prevail in all soils, being Cinnabar (HgSred) and Corderoite (Hg3S2Cl2) the main species. Nevertheless, more soluble mercury compounds, such as HgO and HgSO4, have been also identified in significant proportion (from 6 to 20% of total mercury content), indicating a potential risk of mercury mobilisation. On the other hand, the application of sequential extraction schemes (SES) revealed large portions of weakly available Hg extracted in the residual fraction, while Hg associated to the exchangeable phase amounts as much as 19% of total Hg, thus, supporting the results obtained by XANES.Finally, synchrotron-based micro X-ray fluorescence (μ-XRF) was applied to identify qualitative trends on elemental associations in sample particles through a systematic mapping of its surface. In this concern, results show a well-defined correlation between Hg and Cu/Ni in the analysed particles. On the other hand, an absence of correlation between Hg and several other elements (Fe, Ti, Ca, Zn, Mn and S) was also observed. These effects have been attributed to chemical and physical interactions of mercury species on both enriched particles and sample matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号