首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive competitive flow injection chemiluminescence (CL-FIA) immunoassay for immunoglobulin G (IgG) was developed using gold nanoparticle as CL label. In the configuration, anti-IgG antibody was immobilized on a glass capillary column surface by 3-(aminopropyl)-triethoxysilane and glutaraldehyde to form immunoaffinity column. Analyte IgG and gold nanoparticle labeled IgG were passed through the immunoaffinity column mounted in a flow system and competed for the surface-confined anti-IgG antibody. CL emission was generated from the reaction between luminol and hydrogen peroxide in the presence of Au (III), generated from chemically oxidative dissolution of gold nanoparticle by an injection of 0.10 mol L−1 HCl–0.10 mol L−1 NaCl solution containing 0.10 mmol L−1 Br2. The concentration of analyte IgG was inversely related to the amount of bound gold nanoparticle labeled IgG and the CL intensity was linear with the concentration of analyte IgG from 1.0 ng mL−1 to 40 ng mL−1 with a detection limit of 5.2 × 10−10 g mL−1. The whole assay time including the injections and washing steps was only 30 min for one sample, which was competitive with CL immunoassays based on a gold nanoparticle label and magnetic separation. This work demonstrates that the CL immunoassay incorporation of nanoparticle label and flow injection is promising for clinical assay with sensitivity and high-speed.  相似文献   

2.
An ultrasensitive chemiluminescent (CL) immunoassay system was developed for the detection of tumor marker. This sandwich CL assay method was for the first time designed based on a highly efficient streptavidin-functionalized multi-walled carbon nanotubes (MWCNTs) platform. The glass slide was firstly silylanized with 3-gycidoxypropyltrimethoxysilane (GPTMS) to generate surface epoxy group functionality. Subsequently, the MWCNTs/chitosan solution was mixed with streptavidin solution, and a certain amount of the resulting suspension was dropped on the surface of the epoxy-activated glass substrate to form a firm streptavidin-functionalized MWCNTs platform. The biofunctionalized-MWCNTs platform shows large reactive surface area and excellent biocompatibility. The capture antibody can be efficiently immobilized on the biosensing platform surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as model analyte, the proposed method exhibits wide linear range of 0.001–0.1 ng mL−1 with a low detection limit down to 0.52 pg mL−1. The CL immunoassay system displays 7.9-fold increase in the detection sensitivity compared to the immunosensor without using MWCNTs. Moreover, the resulting immunosensor demonstrates excellent specificity, good reproducibility, and acceptable stability. This streptavidin-functionalized MWCNTs platform opens a novel and promising avenue for fabricating ultrasensitive CL immunoassay system.  相似文献   

3.
Amorphous carbon nanoparticles (ACNPs) showing highly efficient quenching of chemiluminescence (CL) were prepared from candle soot with a very simple protocol. The prepared ACNP was employed as the novel energy acceptor for a chemiluminescence resonance energy transfer (CRET)-based immunoassay. In this work, ACNP was linked with transferrin (TRF), and horseradish peroxidase (HRP) was conjugated to TRF antibody (HRP–anti-TRF). The immunoreaction rendered the distance between the ACNP acceptor and the HRP-catalyzed CL emitter to be short enough for CRET occurring. In the presence of TRF, this antigen competed with ACNP–TRF for HRP–anti-TRF, thus led to the decreased occurrence of CRET. A linear range of 20–400 ng mL−1 and a limit of detection of 20 ng mL−1 were obtained in this immunoassay. The proposed method was successfully applied for detection of TRF levels in human sera, and the results were in good agreement with ELISA method. Moreover, the ACNPs show higher energy transfer efficiency than other conventional nano-scaled energy acceptors such as graphene oxide in CRET assay. It is anticipated that this approach can be developed for determination of other analytes with low cost, simple manipulation and high specificity.  相似文献   

4.
Multimode reader has been generally applied in immunoassay, and in the proposed paper, the 96 well micro-plate was modified with molecularly imprinted melamine sol-gel film, based on which the highly selective and high throughput detection of melamine was achieved. Melamine was imprinted into silica sol-gel films directly using phenyltrimethoxysilane and methyltrimethoxysilane as functionalized organosilicon precursors. The binding characteristic of the imprinted film to melamine was evaluated by equilibrium binding experiments and the morphology was studied by scanning electronic microscope (SEM). Scatchard analysis was carried out to estimate the binding parameters of the imprinted film. The proposed method exhibited excellent selectivity because of specific recognition of MM by molecularly imprinted film. Under the optimum conditions, the chemiluminescence (CL) intensity had a linear relationship against the concentration of melamine over the range of 0.1-50 μg mL−1 with a lower detection limit of 0.02 μg mL−1.  相似文献   

5.
Chloramphenicol (CHL) as a broad-spectrum antibiotic has a broad action spectrum against Gram-positive and Gram-negative bacteria, as well as anaerobes. The use of CHL is strictly restricted in poultry because of its toxic effect. However, CHL is still illegally used in animal farming because of its accessibility and low cost. Therefore, sensitive methods are highly desired for the determination of CHL in foodstuffs. The immunoassays based on labeling as an important tool have been reported for the detection of CHL residues in food-producing animals. However, most of the labeling procedures require multi-step reactions and purifications and thus they are complicated and time-consuming. Recently, in our previous work, luminol functionalized silver nanoparticles have been successfully synthesized, which exhibits higher CL efficiency than luminol functionalized gold nanoparticles. In this work, the new luminol functionalized silver nanoparticles have been used for the labeling of small molecules CHL for the first time and a competitive chemiluminescent immunoassay has been developed for the detection of CHL. Owing to the amplification of silver nanoparticles, high sensitivity for CHL could be achieved with a low detection limit of 7.6 × 10−9 g mL−1 and a wide linear dynamic range of 1.0 × 10−8–1.0 × 10−6 g mL−1. This method has also been successfully applied to determine CHL in milk and honey samples with a good recoveries (92% and 102%, 99% and 107% respectively), indicating that the method is feasible for the determination of CHL in real milk and honey samples. The labeling procedure is simple, convenient and fast, superior to previously reported labeling procedures. The immunoassay is also simple, fast, sensitive and selective. It is of application potential for the determination of CHL in foodstuffs.  相似文献   

6.
A novel enzyme reactor with co-immobilization of β-galactosidase and glucose oxidase in calcium alginate fiber (CAF) and amine modified nanosized mesoporous silica (AMNMS) was prepared which incorporate the adsorption and catalysis of AMNMS with the cage effect of the polymer to increase catalytic activity and stability of immobilized enzyme. The enzyme reactor was applied to prepare a chemiluminescence (CL) flow-through biosensor for determination of lactose combined with a novel luminol-diperiodatonickelate (DPN) CL system we reported. It shows that the CL flow-through biosensor possesses long lifetime, high stability, high catalytic activity and sensitivity. The relative CL intensity was linear with the lactose concentration in the range of 8 × 10−8-4 × 10−6 g mL−1 with the detection limit of 2.7 × 10−8 g mL−1 (3σ). It has been successfully applied to the determination of lactose in milk.  相似文献   

7.
In this work, an automatic multi-channel ink-jet for chemiluminescence (CL) analysis was developed. The four-channel ink-jet device was controlled by a home-made circuit. Differing from the classic flow injection CL, the whole procedure for CL analysis was automatically completed on a hydrophobic glass side. CL reaction of luminal and hydrogen peroxide for the determination of horseradish peroxidase (HRP) was selected as an application to automatic CL analysis platform. All solutions delivered by different channels were precisely ejected to the same position of the glass slide for the CL analysis. The consumption of reaction solution was reduced to nanoliter level. The whole CL analysis could be completed in less than 4 min, which was benefited from the prompt solution mixing in small size of droplet. The CL intensity increased linearly with HRP concentration in the range from 0.01 to 0.5 μg mL−1. The limit of detection (LOD) (S/N = 3) was 0.005 μg mL−1. Finally, the automatic CL system could also be used for the detection of HRP in HRP–protein conjugates, which showed its practical application in immunoassay.  相似文献   

8.
The effect of silver colloidal nanoparticles (AgNPs) on the luminol–isoniazid system was investigated. It was found that AgNPs could act as a nanocatalyst on the luminol–isoniazid system to generate chemiluminescence (CL). The CL emission spectrum of the luminol–isoniazid–AgNPs system showed a peak with a maximum at 425 nm. It was suggested that the luminophor species was the excited state 3-aminophthalate. The reduction of dissolved O2 to H2O2 by isoniazid and decomposition of H2O2 to the oxygen-related radicals were attributed to the catalytic effect of AgNPs. Under optimized conditions, the CL signal intensity was linear with the isoniazid concentration in the range of 10–1000 ng mL− 1, with the correlation coefficient of 0.9996. The limit of detection was 2.7 ng mL− 1 isoniazid. The relative standard deviations for seven repeated measurements of 60 and 200 ng mL− 1 isoniazid were 1.4 and 2.4%, respectively. The effect of potent interfering compounds on the CL signal intensity of the proposed luminol–isoniazid–AgNPs system was investigated. The proposed method was successfully applied to the determination of isoniazid in a pharmaceutical sample.  相似文献   

9.
NiCoBP-doped multi-walled carbon nanotube (NiCoBP–MWCNT) was first synthesized by using induced electroless-plating method and functionalized with the biomolecules for highly efficient electrochemical immunoassay of prostate-specific antigen (PSA, used as a model analyte). We discovered that the as-synthesized NiCoBP–MWCNT had the ability to catalyze the glucose oxidization with a stable and well-defined redox peak. The catalytic current increased with the increment of the immobilized NiCoBP–MWCNT on the electrode. Transmission electron microscope (TEM) and energy dispersive X-ray spectrometry (EDX) were employed to characterize the as-prepared NiCoBP–MWCNT. Using the NiCoBP–MWCNT-conjugated anti-PSA antibody as the signal-transduction tag, a new enzyme-free electrochemical immunoassay protocol could be designed for the detection of target PSA on the capture antibody-functionalized immunosensing interface. Experimental results revealed that the designed immunoassay system could exhibit good electrochemical responses toward target PSA, and allowed the detection of PSA at a concentration as low as 0.035 ng mL−1. More importantly, the NiCoBP-MWCNT-based oxidase mimetic system could be further extended for the monitoring of other low-abundance proteins or disease-related biomarkers by tuning the target antibody.  相似文献   

10.
Liu R  Xing Z  Lv Y  Zhang S  Zhang X 《Talanta》2010,83(1):48-54
A sensitive sandwich type immunoassay has been proposed with the detection by inductively coupled plasma mass spectrometry (ICP-MS) in a single particle mode (time resolved analysis). The signal induced by the flash of ions (197Au+) due to the ionization of single Au-nanoparticle (Au-NP) label in the plasma torch can be measured by the mass spectrometer. The frequency of the transient signals is proportional to the concentration of Au-NPs labels. Characteristics of the signals obtained from Au-NPs of 20, 45 and 80 nm in diameters were discussed. The analytical figures for the determination of Au-labeled IgG using ICP-MS in conventional integral mode and single particle mode were compared in detail. Rabbit-anti-human IgG was used as a model analyte in the sandwich immunoassay. A detection limit (3σ) of 0.1 ng mL−1 was obtained for rabbit-anti-human IgG after immunoreactions, with a linear range of 0.3-10 ng mL−1 and a RSD of 8.1% (2.0 ng mL−1). Finally, the proposed method was successfully applied to spiked rabbit-anti-human IgG samples and rabbit-anti-human serum samples. The method resulted to be a highly sensitive ICP-MS based sandwich type immunoassay.  相似文献   

11.
《Analytical letters》2012,45(3):505-518
Abstract

An indirect competitive chemiluminescent enzyme-linked immunosorbent assay (CL-ELISA) for detection of gatifloxacin residue in milk was developed in this study. Compared with conventional colorimetric ELISA using the same antibody, the developed CL immunoassay shows a significant improvement in sensitivity and detectability with an IC50 of 0.4 ng mL?1 and a detection limit of 0.001 ng mL?1 and thus is suitable to be used as a highly sensitive screening method to detect and regulate illegal use of gatifloxacin in food and food products. The test kit was applied to detect milk samples spiked by gatifloxacin, and satisfactory results were obtained.  相似文献   

12.
Zhi Q  Xie C  Huang X  Ren J 《Analytica chimica acta》2007,583(2):217-222
In this paper, we describe a new method for determination of hemoglobin of single red blood cells by coupling chemiluminescence with capillary electrophoresis (CL-CE). The chemiluminescent detection is based on the catalytic effects of hemoglobin on the luminol-hydrogen peroxide reaction. The conditions of chemiluminescent reaction and capillary electrophoresis were investigated. Hemoglobin in human blood samples was detected with the present method, the linear range from 1.7 μg mL−1 to 6.8 μg mL−1 was tested, and the correlation coefficient of 0.997 and low detection limit of 0.17 μg mL−1 (approximately 2.2 pg, S/N = 3) were obtained. Cell injection procedure was improved, and the method was successfully used to determine hemoglobin of single red blood cells and the statistical result of the average content of hemoglobin in 26 human red blood cells was 23.6 pg. Compared to other current methods, CE with CL system is simple, sensitive and will become an attractive alternative method for single cell analysis.  相似文献   

13.
A polyclonal antibody against ochratoxin A (OTA) was produced from rabbits immunized with the OTA–BSA conjugate. A competitive direct enzyme-linked immunosorbent assay (cdELISA) and a membrane-base colloidal gold immunoassay in flow-through format were developed for the rapid detection of OTA in various food matrices. In the cdELISA, the concentration causing 50% inhibition was 0.07 ng mL−1, and the effects of different chemical conditions (ionic strength, pH value, and organic solvent) were studied. The sensitivity of the assay was higher than those previously reported. A simple, rapid, and efficient extraction method was developed and 74–110% recoveries of spiked samples were obtained. Fifty percent methanol extracts of some food samples such as barley, wheat, oat, corn, rice, and raisins could be analyzed directly by immunoassay after dilution in PBS; grape juice and beer samples could be analyzed directly after dilution with PBS; for coffee samples, a more complex method was used to remove the matrix effect effectively. Membrane-based colloidal gold immunoassays had a visual detection limit of 1.0 ng mL−1 for OTA with a detection time of less than 10 min. For the validation of the cdELISA and membrane-based colloidal gold immunoassay, samples were analyzed by high-performance liquid chromatography. The correlation between data obtained using the microwell assay and HPLC was good (R 2 = 0.984). The developed immunoassay methods are suitable for the rapid quantitative or qualitative determination of OTA in food samples.  相似文献   

14.
Wang C  Wu J  Zong C  Ju H  Yan F 《The Analyst》2011,136(20):4295-4300
A novel trace tag for chemiluminescent (CL) immunoassay was designed by using DNAzyme to functionalize antibody-labeled Au nanoparticles (AuNPs). The trace tag showed an excellent ability to catalyze the oxidation of luminol by hydrogen peroxide, leading to strong CL emission. By coupling the trace tag with a passive mixing accelerated immunoreaction system, a highly sensitive rapid flow-through CL immunoassay method was proposed. Using carcinoembryonic antigen (CEA) as a model analyte, the capture antibody for CEA was immobilized on paramagnetic microspheres, and DNAzyme-anti-CEA antibody functionalized AuNPs were prepared as trace tag. A three-dimensional helical glass tube kept at 37 °C in a water bath was used for passively mixing immunoreagents in a two-step sandwich immunoassay, with which each immunoreaction step could be finished within 150 s. With the help of a magnet, the immunocomplex could conveniently be separated from reactants. Compared with the horseradish peroxidase-based tag, the newly designed trace tag showed obvious signal amplification due to its strong catalytic ability and high loading ratio of DNAzyme on each AuNP. The proposed method showed a linear calibration range from 0.005 to 0.5 ng mL(-1) for CEA detection with a detection limit of 4.1 pg mL(-1) at a signal-to-noise ratio of 3 and acceptable detection reproducibility. The assay results of clinical serum samples were in acceptable agreement with the reference values. The designed immunoassay system with ultrahigh sensitivity provided a programmable and low-cost approach for high-throughput clinical application.  相似文献   

15.
Alzheimer’s disease (AD) is a neurodegenerative disorder resulting from an impaired cholinergic function with loss of cognitive activity in the brain. Haptoglobin is a useful biomarker for AD analysis. Compared to the conventional enzyme-linked immunosorbent assay for haptoglobin analysis, the proposed immunoassay procedure reduces sample analysis time by approximately 55 min. Therefore, immunoassay was coupled with capillary electrophoresis (CE) to determine haptoglobin concentrations indirectly by using magnetic nanobeads (MBs) as a support and laser-induced fluorescence detection. In human plasma sample, the haptoglobin was immobilized on the MBs and reacted with the purified anti-haptoglobin antibody. The optimum separation time for the analyte was shorter than 6 min at 25 °C with a fused-silica capillary column of 40.2 cm × 50 μm ID (effective length 30 cm) and a run buffer containing 25 mM phosphate (pH 8.0) with 0.01% poly(ethylene oxide) (PEO). When using Atto 495 NHS ester as an internal standard (IS) (250.0 ng mL−1), the linear range of the proposed method for indirect determination of haptoglobin was 0.2–3.0 mg mL−1. The method was further used to monitor the course of AD in patients with behavioral and psychological symptoms of dementia (BPSD).  相似文献   

16.
The sublingual combination of buprenorphine and naloxone (Suboxone®) and Methadone Maintenance Therapy have been found effective in treating heroin addiction. A new analytical method suitable for the simultaneous determination of buprenorphine, norbuprenorphine, methadone and naloxone in human plasma by means of liquid chromatography with coulometric detection has been developed. The chromatographic separation was achieved with a phosphate buffer–acetonitrile mixture as the mobile phase on a cyano column. The monitoring cell of the coulometric detector was set at an oxidation potential of +0.600 V. A rapid clean-up procedure of the biological samples using a microextraction by packed sorbent technique has been implemented, employing a C8 sorbent inserted into a syringe needle. The extraction yield values were satisfactory for all analytes (>85%). The calibration curves were linear over a range of 0.25–20.0 ng mL−1 for buprenorphine and norbuprenorphine, 3.0–1000.0 ng mL−1 for methadone and 0.13–10.0 ng mL−1 for naloxone. The sensitivity was also high with limits of detection of 0.08 ng mL−1 for both buprenorphine and norbuprenorphine, 0.9 ng mL−1 for methadone and 0.04 ng mL−1 for naloxone. The intraday and interday precision data were always satisfactory.The method was successfully applied to plasma samples obtained from former heroin addicts treated with opioid replacement therapy.  相似文献   

17.
Conventional 2-D microarray is known to have high-throughput detection capability; however, the sensing spots density is significantly hindered by the spot-to-spot distance (gap) requirement for eliminating cross-talks between adjacent spots. Herein a new conceptual 3-D microarray device is proposed to significantly improve the spots density. To demonstrate advantages of the 3-D array, a microfabrication-free fluidic immunoassay device is further made by simply coupling an antibodies-arrayed glass cuboid into a circular glass tube. Rapid, sensitive and high-throughput flow-through immunoassays were accomplished with the 3-D array-based device for detection limits of 10–100 pg mL−1 and wide dynamic range over 4–5 orders of magnitude in human serum with cancer biomarkers α-fetoprotein (AFP) and carcinoembryonic antigen (CEA) as model targets, holding great promise for practical clinical applications. The 3-D microarray device not only significantly increases the density of sensing spots, but also greatly enhances the mass transport for rapid immunoassay when using in a flow-through device.  相似文献   

18.
Ji X  He Z  Ai X  Yang H  Xu C 《Talanta》2006,70(2):353-357
A competitive immunoassay for clenbuterol (CLB) based on capillary electrophoresis with chemiluminescence (CL) detection was established. The method was based on the competitive reaction of horseradish peroxidase (HRP)-labeled CLB (CLB-HRP) and free CLB with anti-CLB antiserum. The factors affecting the electrophoresis and CL detection were systematically investigated with HRP as a model sample. Under the optimal conditions, the tracer CLB-HRP and the immunoassay complex were separated, and the linear range and the detection limit (S/N = 3) for CLB were 5.0-40 nmol l−1 and 1.2 nmol l−1, respectively. The proposed method has been applied satisfactorily in the analysis of urine sample.  相似文献   

19.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

20.
We here report a detection technology that integrates highly sensitive time-resolved luminescence technique into lateral flow assay platform to achieve excellent detection performance with low cost. We have developed very bright, surface-functionalized and mono-dispersed phosphorescent nanoparticles of long lifetime under ambient conditions. The phosphorescent nanoparticles have been used to conjugate with monoclonal antibody for C-reactive protein (CRP), an inflammatory biomarker. Lateral flow immunoassay devices have been developed using the conjugate for highly sensitive detection of CRP. The CRP assay can achieve a detection sensitivity of <0.2 ng mL−1 in serum with a linear response from 0.2 to 200 ng mL−1 CRP. We have also developed a low cost time-resolved luminescence reader for the lateral flow immunoassay (LFIA) devices. The reader does not use expensive band pass filter and still provide very low detection background and high detection sensitivity on solid substrates such as nitrocellulose membranes. The reader can detect less than 2.5 ng phosphorescent particles captured on a nitrocellulose membrane strip with more than three orders of magnitude linear detection dynamic range. The technology should find a number of applications, ranging from clinical diagnostics, detection of chemical and biological warfare agents, to food and environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号