首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气相色谱质谱法测定化妆品中9种多环芳烃   总被引:1,自引:0,他引:1  
建立了气相色谱质谱法测定化妆品中9种多环芳烃的分析方法。化妆品中的萘、苯并[a]蒽、、苯并[b]荧蒽、苯并[j]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘、二苯并[a,h]蒽等9种多环芳烃用甲醇超声提取后,用环己烷液-液萃取后浓缩,经硅胶-中性氧化铝柱净化后,采用气相色谱-质谱测定。多环芳烃浓度在0.05~2 mg/L范围内,质量浓度与其峰面积呈良好的线性关系。在低、中、高3个添加水平下,9种多环芳烃化合物的平均回收率为81.6%~100.2%,相对标准偏差为1.3%~5.8%。方法可用于化妆品中多环芳烃的检测。  相似文献   

2.
An accurate and reliable method for determining polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols is described. This optimised gas chromatography-mass spectrometry (GC-MS) method permits a wide range of concentrations to be analysed without the influence of interferences.Pre-treatment comparison of four kinds of aerosol collector filters determined that quartz and glass fibre filters were the most suitable. Solvents like cyclohexane, toluene, acetonitrile and dichloromethane were evaluated for their PAH-extraction capacity. Ultrasonic extraction using CH2Cl2 was selected because it is rapid and easy; moreover, this solvent increases the sample-throughput capacity.PAH compounds were quantitatively collected and ultrasonically extracted twice using 15 mL of CH2Cl2 for 15 min for each replicate. Rotavapor concentration, fractionation and dissolution were also optimised.A certified standard mixture (16 EPA PAHs), a deuterated compound and precision recovery assays were used for validating the proposed methodology. Adequate analytical parameters were obtained. Detection limits were (1.6-26.3) × 10−5 ng and quantification limits were (5.2-87.6) × 10−5 ng.Analysis of the environmental samples detected 4-10 EPA list PAH compounds. In addition, 2-11 tentative compounds were found, and their molecular structures were described for the first time.Our study of both Youden method and the standard addition method has shown that the proposed determination of PAHs in environmental samples is free of systematic errors.In conclusion, this unbiased methodology improves the identification and quantification of PAH compounds. High sensitivity as well as acceptable detection and quantification limits were obtained for the environmental applications.  相似文献   

3.
Headspace solvent microextraction (HSME) was shown to be an efficient preconcentration method for extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A microdrop of 1-butanol (as extracting solvent) containing biphenyl (as internal standard) was used in this investigation. Extraction occurred by suspending a 3 μl drop of 1-butanol from the tip of a microsyringe fixed above the surface of solution in a sealed vial. After extraction for a preset time, the microdrop was retracted back into the syringe and injected directly into a GC injection port. The effects of nature of extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, ionic strength and extraction time on HSME efficiency were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by water samples spiked with PAHs. The optimized procedure was successfully applied to the extraction and determination of PAHs in different water samples.  相似文献   

4.
For accurate quantification of polycyclic aromatic hydrocarbons (PAHs) in dust samples, we investigated the use of microwave-assisted solvent extraction (MAE) combined with isotope-dilution mass spectrometry (IDMS) using deuterium-labelled PAHs (D-PAHs). Although MAE with a methanol/toluene mixture (1:3 by volume) at 160 °C for 40 min was best for extracting PAHs from tunnel dust among examined, the recovery yields of D-PAHs decreased with increasing molecular weight (<40% for MW ≥ 264; that of deuterium-labelled indeno[123-cd]pyrene (D-IcdP) was only 7.1%). Although the residues were extracted a second time, the observed concentrations did not change dramatically (<5%), and the recovery yields of heavier D-PAHs (i.e., MW ≥ 264) were approximately half of those of the first extract, including D-IcdP (3.4%). These results suggest that both partitioning and isotopic equilibria of PAHs and D-PAHs between sample and solvent were achieved for extractable heavier PAHs under the condition. Thus, the observed concentrations of PAHs obtained by MAE–IDMS were reasonable, even though recovery yields of D-PAHs were <50%. From the results of carbon analyses and extractable contents, lower recovery yields of D-PAHs from the tunnel dust were due to a large content of char with low extractable contents.  相似文献   

5.
A gas chromatographic (GC) method with mass spectrometry detection (MS) for the determination of eight polycyclic aromatic hydrocarbons (PAHs) in olive pomace oil has been developed. The oil was diluted with n-pentane and extracted by liquid-liquid partition with dimethyl sulphoxide (DMSO). After water addition and back-extraction with cyclohexane, a thin-layer chromatography on silica gel was performed as a further purification step. The PAHs spot was scraped off from the plate and the final extract was concentrated and analysed by GC-MS in full scan mode. The eight PAHs under investigation were determined in the presence of the corresponding labelled compounds added as internal standards to the sample at the beginning of the analytical process. The identified PAHs were then quantified by the isotope dilution methodology assuring the compensation of the concentration of each analyte for any variation in the sample preparation. The method precision was satisfactory with relative standard deviation (R.S.D.) values in the range 3.6-12.7% for all PAHs. The average recovery rates ranged from 69.0 to 97.5%. Accuracy was also calculated for benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene by analysing a certified reference material (CRM 458, coconut oil) with adequate results. All response curves exhibited a linear fit from 0.1 to 10 microg ml(-1) and the determination coefficients R2 were better than 0.9942. The limits of detection (0.1-0.4 microg kg(-1)) were acceptable when compared with the maximum permitted limit of 2 microg kg(-1) for each of the eight considered PAHs and 5 microg kg(-1) for the sum of the eight PAHs established by the Italian legislation. Measurement uncertainty was finally calculated identifying and quantifying the uncertainty components of the analytical process. The relative expanded uncertainties (Uc), expressed as percent values were in the range 8.5-11.4% thus appropriate for residues quantification in the range of concentrations considered in the present study.  相似文献   

6.
The assessment of historical trends in atmospheric deposition of organic contaminants by using peat samples has been reported on several occasions because these samples represent an almost ideal medium for recording temporal changes in organic contaminant deposition rates. The determination of polycyclic aromatic hydrocarbons (PAHs) in peat samples is complicated due to the high content of organic matter in peat, which affects both extraction efficiency and analytical quality. A rapid and simple method is proposed for the determination of 10 US Environmental Protection Agency indicator PAHs in complex matrices such as peat. This article reviews and addresses the most relevant analytical methods for determining PAHs in peat. We discuss and critically evaluate three different extraction procedures, such as ultrasound-assisted solvent extraction (UASE), shaking and pressurized liquid extraction (PLE). Clean-up of extracts was performed by solid-phase extraction using silica cartridges. Detection of the selected PAHs was carried out by high-performance liquid chromatography coupled with fluorescence detection for determination. Optimization of the variables affecting extraction by the selected extraction techniques was conducted, concluding that the UASE extraction method using hexane:dichloromethane (80:20) as extractant was robust enough to determine the selected PAHs in peat samples with estimated quantification limits between 0.050 and 3.5 μg/kg depending on the PAH. UASE did not demand sophisticated equipment and long extraction times. PLE involved sophisticated equipment and showed important variations in the results. The method proposed was applied to the determination of PAHs in peat samples from Xistral Mountains (Galicia, Spain).  相似文献   

7.
A method for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in milk and related products based on direct immersion-solid phase microextraction (DI-SPME) followed by gas chromatography-mass spectrometry detection (GC-MS) has been developed. The influence of various parameters on PAH extraction efficiency was carefully monitored. Good performance (recovery, precision and quantitation limits) was attained when a PDMS/DVB fiber was immersed in the sample for 60 min at 55 °C. Detection limits ranged from 0.003 to 1.5 μg L−1 at a signal-to-noise ratio of 3, depending on the compound and the sample. The proposed method was successfully applied to infant formulas, milk and related products and the presence of both fluoranthene and pyrene in two samples was confirmed.  相似文献   

8.
建立了快速溶剂萃取(ASE)-气相色谱-串联质谱(GC-MS/MS)分析海洋沉积物中16种多环芳烃(PAHs)的分析方法。样品由正己烷-丙酮(1∶1,v/v)溶液萃取,经无水硫酸钠脱水、氮吹浓缩后,采用硅胶固相萃取小柱进行净化,然后经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,在电子轰击电离源下以多反应监测(MRM)模式进行检测,内标法定量。分析结果表明,16种PAHs在0.01~1.00 mg/L范围内线性关系良好,相关系数(R)大于0.997;目标物的加标回收率为75.8%~97.8%;日内与日间精密度(RSD)均小于10%。当取样量为20.0 g时,16种PAHs的方法检出限为0.048~0.234 μg/kg。该法快速、准确、稳定,能够满足海洋沉积物中痕量PAHs的测定。  相似文献   

9.
An ultrasound-assisted solvent extraction procedure has been optimised to speed up total polycyclic aromatic hydrocarbons (T-PAHs) extraction from mussel soft tissue. The T-PAHs releases have been evaluated by spectrofluorimetry (excitation and fluorescence emission wavelengths of 300 and 382 nm, respectively, and using chrysene as calibrant). Variables such as sonication time, ultrasound frequency, n-hexane volume, dichloromethane volume, number of repeated extractions with n-hexane and number of repeated extraction with dichloromethane were simultaneously studied by applying a Plackett-Burman design (PBD) approach. Results showed that ultrasound frequency and n-hexane and dichloromethane volumes were statistically significant variables (confidence interval of 95%). These last two variables were finally optimised by using central composite designs (CCD), yielding optimum n-hexane and dichloromethane volumes of 2.5 and 6.5 ml, respectively. The lowest T-PAHs releasing at high ultrasound frequency (35 kHz) led to choice the lowest ultrasound frequency (17 kHz) to perform the extraction. Variables such as sonication time and number of repeated extraction with n-hexane or dichloromethane were statistically non-significant and they were fixed at 10 min and the extraction with n-hexane and dichloromethane were performed once. The limit of detection was 0.021 μg g−1 (referred to dried mass), the repeatability of the overall method was 4.7% (n = 9) and the analytical recoveries were between 98 and 105%. The proposed method was finally applied to 16 mussel samples (Mytilus galloprovincialis) from Ría de Arousa estuary (Galicia, northwest Spain).  相似文献   

10.
A methacrylate-based monolithic capillary column has been evaluated for the preconcentration of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. For this purpose, the monolyte was in situ synthesized in a 6cm×0.32mm id fused-silica capillary. The microextraction unit was fitted to a micro-HPLC pump to pass 10mL of sample. The isolated pollutants were eluted by means of 10μL of methanol, the organic phase being directly collected in a specific interface that can be fitted to the injection port of the gas chromatograph without modification. The interface allows the on-line thermal desorption of the PAHs, avoiding the dilution and providing enough sensitivity to reach the legal limits established for these pollutants in the matrices selected. The limits of detection achieved for 10mL of water ranged between 2.8ng/L (indeno(1,2,3-cd)pyrene) and 11.5ng/L (acenaphthene) with acceptable precision (between 4.5 and 18.2% RSD). The method was applied to the determination of the selected PAHs in tap, river waters and sewage, being fluoranthene and pyrene detected in all of them at concentrations lower than the legal limits established for these compounds in the matrices assayed.  相似文献   

11.
A gas chromatograph/mass-selective detection (GC/MS) method has been developed and validated for the quantitation of 16 polycyclic aromatic hydrocarbons found in mainstream tobacco smoke condensate. The utilization of two types of solid-phase extraction media combined with capillary column technology removed matrix interferences, afforded a significant reduction in analysis run time, and increased accuracy. Also, the addition of a chilled impinger was used to trap semi-volatile polycyclic aromatic hydrocarbons and to provide more accurate data. This was done without sacrificing the repeatability, reproducibility, and precision obtained in previously published methods. The development and validation studies discussed in this paper resulted in an improved, robust analytical method capable of increasing laboratory capacity and reducing sample reporting time.  相似文献   

12.
An ultrasound-assisted emulsification-microextraction (USAEME) procedure was developed for the extraction of US EPA 16 polycyclic aromatic hydrocarbons (PAHs) in 10 mL of water samples, with subsequent determination by gas chromatography-mass spectrometry (GC-MS). After determination of the most suitable solvent and solvent volume, several other parameters (i.e., extraction time, centrifugation time and ionic strength of the sample) were optimized using a 23 factorial experimental design. Limits of detection ranged from 0.001 to 0.036 μg L−1. The developed procedure was applied to fortified distilled water with different fortification levels (0.5, 2 and 5 μg L−1). Recoveries were over 92% and relative standard deviations of the recoveries were below 8%. The efficiency of the USAEME was compared with traditional liquid-liquid extraction (LLE) and solid-phase extraction on real water samples (i.e., tap water, well water and surface (lake) water as well as domestic and industrial wastewaters). The USAEME showed comparable efficiencies especially with LLE. The developed USAEME was demonstrated to be robust, viable, simple, rapid and easy to use for the determination of PAHs in water samples by GC-MS.  相似文献   

13.
<正>Triacontyl modified silica gel as a sorbent coupled with gas chromatography-mass spectrometry(GC-MS) was developed to determine EPA prior 16 polycyclic aromatic hydrocarbons(PAHs) in water samples.Various parameters of solid-phase extraction such as organic modifier solvent,eluent,sample flow rate and volume were optimized.The developed method was found to yield a linear calibration curve in the concentration range of 0.05-8μg/L with respect to naphthalene,acenaphthylene,acenaphthene and 0.01-8μg/L for dibenz[a,h]anthracene and 0.05-14μg/L for fluorene,phenanthrene,anthracene and 0.01-14μg/L for the rest of analytes.Furthermore,the good accuracy and repeatability of the method made sure the requirements for achieving reliable analysis of PAHs in the environmental water samples,and the recoveries of optimal method were in the range of 80-120%except to higher volatility PAHs.C_(30)-bonded silica was proved to be an efficient sorbent for extraction of high molecular weight PAHs.  相似文献   

14.
Yan Liu  Haifang Li 《Talanta》2009,77(3):1037-1042
Monodisperse magnetic C18 microspheres were prepared based on the three-step reactions of solvothermal reduction, silanization and alkylation. The microspheres are of uniform sizes in the range of 200-260 nm. The structure of synthesized magnetic C18 microspheres was studied by transmission electron microscopy, scanning electron microscopy, X-ray diffraction patterns, element analysis and vibrating sample magnetometry. This material has a high magnetic saturation value of 59 emu g−1 and is easy to manipulate under a magnet. The prepared material was used for the preconcentration of the polycyclic aromatic hydrocarbon in water. The effects of desorption solvent and the amount of adsorbent on the preconcentration were also investigated. The results showed that the developed method was beneficial for the preconcentration of PAHs of middle molecular weight.  相似文献   

15.
Thirteen polycyclic aromatic hydrocarbons have been determined in soy‐based nutraceutical products. First, an optimization of extraction procedure was performed, and a solid–liquid extraction assisted by sonication and a dilute and shoot procedure were compared, selecting the dilute and shoot approach for the extraction of target compounds, utilizing a mixture of acetone/n‐hexane (1:1 v/v) as extractant solvent. After this, a clean‐up step was needed bearing in mind the complexity of these matrices. Dispersive solid‐phase extraction, using a mixture of C18 and Zr‐Sep+ (25 mg/mL each) was used. The separation was achieved by gas chromatography and detection with triple quadrupole tandem mass spectrometry. For quantification purposes, matrix‐matched calibration was used. The validation was applied at three concentration levels (20, 100 and 250 μg/kg), obtaining recoveries between 70 and 120% and precision values equal to or lower than 23%. Limits of detection and quantification were below 8 and 20 μg/kg, respectively. The method was applied in 11 samples, detecting five polycyclic aromatic hydrocarbons at concentrations ranging from 4.1 to 18.5 μg/kg.  相似文献   

16.
Zheng L  Chen H  Chen J  Feng Z  Gao S  Zhou J 《色谱》2011,29(12):1173-1178
建立了一种简单、准确的测定热塑性弹性体中16种多环芳烃(PAHs)的气相色谱-质谱(GC-MS)方法。考察了样品制备、萃取溶剂、萃取方法、时间以及温度对厂家制备的阳性热塑性弹性体样品中PAHs提取效率的影响,确定了萃取条件和方法。样品经甲苯超声萃取、浓缩后用环己烷溶解、二甲亚砜液液萃取净化后采用GC-MS进行分析,内标法定量。通过对不同材质阳性热塑性弹性体样品的加标回收、精密度试验等对建立的方法进行评价,16种PAHs的平均回收率为70%~117%,精密度为0.2%~10.8%。该方法适合于热塑性弹性体中PAHs的测定。  相似文献   

17.
Summary Due to the carcinogenity and ubiquity of polycyclic aromatic hydrocarbons in the environment they are of ongoing interest to analytical chemistry. In this study, a comparison of the classic Soxhlet extraction and, fluidized-bed extraction, has been conducted. The extraction of polycyclic aromatic hydrocarbons by this technique has been optimized considering as experimental variables the variation of the number of extraction cycles and the holding time after reaching the heating temperature by means of a surface response design. The significance of the operational parameters of the fluidized-bed extraction on the performance characteristics has been investigated. For the determination of the analytes a selective clean-up of the extracts followed by a fast gas chromatography method with mass spectrometric detection was used, resulting in low limits of detection (0.2 pg μL−1). The accuracy of the complete analytical method was established by extraction and analysis of reference materials.  相似文献   

18.
Pressurised liquid extraction (PLE) was applied to determine the atmospheric levels of 16 polycyclic aromatic hydrocarbons (PAHs) in the gas and particulate phases. The method involved high‐volume air sampling with quartz fibre filters (QFFs) and polyurethane foam (PUF) plugs and analytes were subsequently extracted from the samples by PLE, and determined with GC‐MS. We optimised the PLE conditions for the solvent, the number of cycles and extraction temperature. Recoveries were higher than 90% for most compounds. Method LODs and LOQs were between 0.001 and 0.02 ng/m3 and between 0.01 and 0.05 ng/m3. Air samples were taken from a site in the region of Tarragona in Catalonia, Spain, where one of the largest petrochemical complexes in southern Europe is located. The total concentration of PAHs were from 6.7 to 27.66 ng/m3, with predominant levels of PAHs appearing in the gas phase (48–81%), and an average level of benzo[a]pyrene, the most carcinogenic PAH, of 0.86 ng/m3.  相似文献   

19.
An analytical method for simultaneous determination of particle-associated and gaseous-phase concentrations of polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH) in atmospheric aerosol samples obtained by high-volume samplers using polyurethane foam adsorbent (PUF) and quartz fibber filters (QFF) has been investigated. Quality control of the analytical procedure was carried out by blank control and by evaluating limits of detection, recoveries, accuracy, and repeatability. The proposed method was subsequently used to determine PAH and PCB in the gaseous and particulate phases of the aerosols that enter the Venice Lagoon atmosphere. The highest concentrations of PCB and PAH were predominantly in the gaseous phase. In both particulate and gaseous phases the penta-CB congeners dominated total PCB concentrations whereas phenanthrene, fluoranthene, and pyrene dominated the PAH concentrations. Total (gaseous plus particulate) PCB and PAH concentrations were higher at the site directly influenced by the industrial plants but the concentrations in marine aerosol samples were lower by a factor four only and must be taken into consideration when studying the chemical contamination of the Venice Lagoon.  相似文献   

20.
Magnetic polyimide poly(4,4′‐oxydiphenylene‐pyromellitimide) nanoparticles were successfully synthesized and developed for the solid‐phase extraction of polycyclic aromatic hydrocarbons in seawater samples. The aromatic rings of polyimide coating provided a good adsorption capacity (28.3–42.5 mg/g) for polycyclic aromatic hydrocarbons because of the π–π stacking interaction. The developed method was used as a simple, fast, and efficient extraction and preconcentration technique for the trace analysis of polycyclic aromatic hydrocarbons. The high chemical, physical and thermal stability, excellent reusability, and good magnetic properties are the merits of the sorbent. High preconcentration factors (41–63) were obtained. The sorbent was also characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray spectrometry, transmission electron microscopy, and vibrating sample magnetometry. After optimizing several appropriate extraction parameters, the results indicated that the extraction recoveries of polycyclic aromatic hydrocarbons were in the range of 61.6–94.7%, with relative standard deviations between 2.9 and 5.4%, the calibration graph was linear in the concentration range of 1–100 μg/L (r > 0.9991) with limit of detection in the range of 0.15–0.19 μg/L (n = 3). Seawater samples were analyzed as real samples and good recoveries (68.5–99.5%) were obtained at different spiked values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号