首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physical synthesis of multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts is reported for the first time. The novel nanorods were synthesized via the oblique angle deposition method, deposited prior to the formation of each individual noble metal layer, in a sequential fashion. It has been shown that the oblique angle deposition controls the morphology and electrochemical properties of the resultant nanostructures. Sequentially the multilayered nanorods comprising Pt and Ru segments exhibited superior electrocatalytic activity when compared to equivalent monometallic Pt nanorods with respect to methanol electrooxidation reaction in an acidic medium. Moreover, it has been established that the electrochemical process takes place at the Pt/Ru nanorods followed the bifunctional mechanism. The relative rates of reaction, recorded using chronoamperometry, show a linear relationship between the long-time current density and the number of Pt/Ru interfaces. Interestingly, the best catalyst for methanol oxidation was found to the surface of bimetallic Pt/Ru nanorods produced by the heat treatments via the so-called electronic effect. This reflects the fact that the ensemble effects of combined bifunctional and electronic effects via second elements could be expected in methanol oxidation reactions. Electrocatalytic activities correlate well with bimetallic pair sites and electronic properties analyzed by X-ray photoemission spectroscopy and X-ray absorption near-edge structure.  相似文献   

2.
Gold, Au/Ag, Au/Pt and Au/Pd bimetallic nanoparticles with varying mol fractions were synthesized in ethylene glycol and glycerol, using the microwave technique in the presence of a stabilizer poly(N-vinylpyrrolidone) (PVP). It was found that bimetallic colloids of Au/Ag, Au/Pd and Au/Pt form an alloy either on co-reduction of respective metal ions or on mixing individual sols.  相似文献   

3.
4.
TPD, XPS IR methods were used to study how the composition of mixed Pt and Pd contacts over Al2O3 affects the nature of SO2 complexes formed in the presence of O2. Two types of sulfates of different structure and binding strength are formed in SO2 oxidation by oxygen over Pt and Pd contacts. Introducing elements such as Co and Cr into the composition, one can significantly reduce the formation of weakly binding sulfate-1 as well as sulfate-2 too.  相似文献   

5.
In this communication we report our research work on low Pt content Pt–Ru–Ir–Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm2. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25–35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner–Emmett–Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts.  相似文献   

6.
Wormholelike mesoporous carbons(WMCs) with three different pore diameters(D_p),namely WMC-F7(D_p=8.5nm),WMC-F30(D_p=4.4nm),and WMC-FO(D_p = 3.1nm) are prepared via a modified sol-gel process.Then PtRu nanoparticles with the particle size(d_(Pt)) of ~3.2 nm supported on WMCs are synthesized with a modified pulse microwave-assisted polyol method.It is found that the pore diameter of WMCs plays an important role in the electrochemical activity of PtRu toward alcohol electrooxidation reaction.PtRu/WMC-F7 with Dp 2d_(Pt) exhibits the largest electrochemical surface area(ESA) and the highest activity toward methanol electrooxidation.With the decrease in D_p,PtRu/WMC-F30 and PtRu/WMC-FO have much lower ESA and electrochemical activity,especially for the isopropanol electrooxidation with a larger molecular size.When D_p is more than twice d_(Pt),the mass transfer of reactants and electrolyte are easier,and thus more PtRu nanoparticles can be utilized and the catalysts activity can be enhanced.  相似文献   

7.
We have developed efficient electrocatalysts for methanol oxidation using new synthetic method facilitating deposition of Pt–Ru very thin nanoplatelets on carbon nanoparticles The method involves oxidation of carbon support, adsorption of Pb2+, its reduction and galvanic displacement of Pb0 by Pt and/or Ru. The Pt mass activity of this catalyst is about 10 times higher than that of the commercial Pt–Ru/C. The catalyst with the 1:1 Pt/Ru ratio displayed the highest methanol oxidation activity per surface Pt atom. Our results demonstrate the new synthetic method that yields the catalyst with potential for solving the problem of high Pt loading in direct methanol fuel cell anodes.  相似文献   

8.
In this work,fullerene was modified by platinum,ruthenium,tin and tungsten nanoparticles.The material was characterized by XRD,ICP-OES and TEM micrograph.The average nanoparticle size on fullerene was 5-8 nm.The application of this material was investigated as a catalyst for methanol oxidation in direct methanol fuel cell.A glassy carbon electrode was modified by Pt/Ru/Sn/W fullerene and electrocatalytic activity of the electrode toward methanol oxidation in basic medium has been demonstrated and investigated using cyclic voltammetry.The catalyst showed good reactivity for methanol oxidation.  相似文献   

9.
Pt–Ru nanoparticle-based methanol electro-oxidation catalysts with high concentration of metallic phase on carbon black have been synthesised by a low-temperature colloidal preparation route. Amorphous Pt–Ru oxide nanoparticles were deposited on carbon and subsequently reduced in hydrogen stream at different temperatures to obtain crystalline phases with tailored particle size. The electro-catalytic activity for methanol oxidation was investigated in half-cell from 30 to 60 °C. The results were interpreted in terms of particle size, crystallographic structure, degree of alloying and carbon monoxide adsorption properties. The best performance was achieved for the catalyst with intermediate particle size in the investigated range. Furthermore, it is observed that the optimal properties for these catalysts depend on the operating temperature.  相似文献   

10.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

11.
Co thin films with novel hierarchical structures were controllably fabricated by simple electrochemical deposition in the absence of hard and soft templates, which were used as sacrificial templates to further prepare noble metal (Pd, Pt, Au) hierarchical micro/nanostructures via metal exchange reactions. SEM characterization demonstrated that the resulting noble metal thin films displayed hierarchical architectures. The as-prepared noble metal thin films could be directly used as the anode catalysts for the electro-oxidation of formic acid. Moreover, bimetallic catalysts (Pt/Au, Au/Pt) fabricated based on the monometallic Au, Pt micro/nanostructures exhibited the higher catalytic activity compared to the previous monometallic catalysts.  相似文献   

12.
Pd and PdNi nanoparticles supported on Vulcan XC-72 carbon were prepared by a chemical reduction with formic acid process. The catalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry, and chronoamperometry. The results showed that the Pd and PdNi nanoparticles, which were uniformly dispersed on carbon, were 2–10 nm in diameters. The PdNi/C catalyst has higher electrocatalytic activity for methanol oxidation in alkaline media than a comparative Pd/C catalyst and shows great potential as less expensive electrocatalyst for methanol electrooxidation in alkaline media in direct methanol fuel cells.  相似文献   

13.
The role of surfactants, cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and Triton X-100 (in the catalyst), on methanol oxidation at commercial 50:50 Pt–Ru/C catalyst-coated glassy carbon has been studied using cyclic voltammetry, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Surfactant containing catalysts showed a considerable reduction in the methanol oxidation potential. In terms of oxidation potential, better results (lower methanol oxidation potential) were observed in the order SDS > Triton X-100 > CTAB > no surfactant. SEM studies on the catalyst ink showed better homogeneity in the sample prepared using surfactant. This indicates better Pt Pt contact, which is likely to favour methanol adsorption and its oxidation. Hence, lowering of oxidation potentials for methanol oxidation could be seen with use of surfactants. Results of FT-IR on the catalyst ink showed definite changes in the frequencies in the case of Pt–Ru/C containing surfactants indicating definite interaction between catalyst and surfactant. Catalysts, with and without surfactants, yielded linear plots of concentration vs peak currents for methanol oxidation (0–2 M). With surfactant containing catalysts, reduction in methanol oxidation current was observed, and the order followed was the reverse of the above.  相似文献   

14.
Selectivity to 1,2-cis- and 1,2-trans-dimethylcyclohexane products was studied in o-xylene hydrogenation over Pt, Pd, Rh and Ru supported catalysts. The results show that selectivity is sensitive to particle size.
1,2-- 1,2-- - Pt, Pd, Rh Ru. .
  相似文献   

15.
We report the microwave synthesis and characterization of Au and Pd nanoparticle catalysts supported on CeO2, CuO, and ZnO nanoparticles for CO oxidation. The results indicate that supported Au/CeO2 catalysts exhibit excellent activity for low-temperature CO oxidation. The Pd/CeO2 catalyst shows a uniform dispersion of Pd nanoparticles with a narrow size distribution within the ceria support. A remarkable enhancement of the catalytic activity is observed and directly correlated with the change in the morphology of the supported catalyst and the efficient dispersion of the active metal on the support achieved by using capping agents during the microwave synthesis. The significance of the current method lies mainly in its simplicity, flexibility, and the control of the different factors that determine the activity of the nanoparticle catalysts.  相似文献   

16.
A series of early metal-promoted Ru-, Pd-, Pt-, and Rh-doped mesoporous tantalum oxide catalysts were synthesized using a variety of dopant ratios and dopant precursors, and the effects of these parameters on the catalytic activity of NH3 synthesis from H2 and N2 were explored. Previous studies on this system supported an unprecedented mechanism in which N-N cleavage occurred at the Ta sites rather than on Ru. The results of the present study showed, for all systems, that Ba is a better promoter than Cs or La and that the nitrate is a superior precursor for Ba than the isopropoxide or the hydroxide. 15N-labeling studies showed that residual nitrate functions as the major ammonia source in the first hour but that it does not account for the ammonia produced after the nitrate is completely consumed. Ru3(CO)12 proved to be a better Ru precursor than RuCl(3).3H2O, and an almost linear increase in activity with increasing Ru loading level was observed at 350 degrees C (623 K). However, at 175 degrees C (448 K), the increase in Ru had no effect on the reaction rate. Pd functioned with comparable rates to Ru, while Pt and Rh functioned far less efficiently. The surprising activities for the Pd-doped catalysts, coupled with XPS evidence for low-valent Ta in this catalyst system, support a mechanism in which cleavage of the N-N triple bond occurs on Ta rather than the precious metal because the Ea value for N-N cleavage on Pd is 2.5 times greater than that for Ru, and the 9.3 kJ mol-1 Ea value measured previously for the Ru system suggests that N-N cleavage cannot occur at the Ru surface.  相似文献   

17.
The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.  相似文献   

18.
Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are employed to investigate methanol oxidation reactions on single-walled carbon nanotube-supported platinum (Pt) and platinum–ruthenium (Pt-Ru) nanoparticles. EIS and CV measurements show consistent results: Pt catalyst supported on single-walled carbon nanotubes possesses higher catalytic activity for methanol oxidation than that on carbon black. Additionally, semicircles in the second quadrant of the Nyquist diagrams are observed for methanol oxidation on all types of catalytic nanoparticles when applying an electrical potential of 600 mV, which indicates the occurrence of negative resistance during electrocatalytic methanol oxidations. However, all impedance spectra show positive resistance at other electrode potentials (e.g., 300, 400, and 800 mV). Electrocatalytic characteristics of all catalysts are further analyzed by equivalent circuit simulations. We propose that intermediate coverage on the catalyst surface and subsequently the oscillation of nonlinear electrochemical methanol oxidations lead to the occurrence of negative resistance at 600 mV.  相似文献   

19.
The species Cy(2)PHC(6)F(4)BF(C(6)F(5))(2) reacts with Pt(PPh(3))(4) to yield the new product cis-(PPh(3))(2)PtH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 1 via oxidative addition of the P-H bond of the phosphonium borate to Pt(0). The corresponding reaction with Pd(PPh(3))(4) affords the Pd analogue of 1, namely, cis-(PPh(3))(2)PdH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 3; while modification of the phosphonium borate gave the salt [(PPh(3))(3)PtH][(tBu(2)PC(6)F(4)BF(C(6)F(5))(2))] 2. Alternatively initial deprotonation of the phosphonium borate gave [tBu(3)PH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 4, [SIMesH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 5 which reacted with NiCl(2)(DME) yielding [BaseH](2)[trans-Cl(2)Ni(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 6, SIMes 7) or with PdCl(2)(PhCN)(2) to give [BaseH](2)[trans-Cl(2)Pd(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 8, SIMes 9). While [C(10)H(6)N(2)(Me)(4)H][tBu(2)PC(6)F(4)BF(C(6)F(5))(2)] 10 was also prepared. A third strategy for formation of a metal complex of anionic phosphine-borate derivatives was demonstrated in the reaction of (COD)PtMe(2) with the neutral phosphine-borane Mes(2)PC(6)F(4)B(C(6)F(5))(2) affording (COD)PtMe(Mes(2)PC(6)F(4)BMe(C(6)F(5))(2)) 11. Extension of this reactivity to tBu(2)PH(CH(2))(4)OB(C(6)F(5))(3)) was demonstrated in the reaction with Pt(PPh(3))(4) which yielded cis-(PPh(3))(2)PtH(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)) 12, while the reaction of [SIMesH][tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)] 13 with NiCl(2)(DME) and PdCl(2)(PhCN)(2) afforded the complexes [SIMesH](2)[trans-Cl(2)Ni(tBu(2)PC(4)H(8)OB(C(6)F(5))(3))(2)] 14 and [SIMesH](2)[trans-PdCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))(2)] 15, respectively, analogous to those prepared with 4 and 5. Finally, the reaction of 7 and 13with [(p-cymene)RuCl(2)](2) proceeds to give the new orange products [SIMesH][(p-cymene)RuCl(2)(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))] 16 and [SIMesH][(p-cymene)RuCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))] 17, respectively. Crystal structures of 1, 6, 10, 11, 12, and 16 are reported.  相似文献   

20.
In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号