共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expression, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension. 相似文献
2.
The motion of fibers in turbulent pipe flow was simulated by 3-D integral method based on the slender body theory and simplified model of turbulence. The orientation distribution of fibers in the computational area for different Re numbers was computed. The results which were consistent with the experimental ones show that the fluctuation velocity of turbulence cause fibers to orient randomly. The orientation distributions become broader as the Re number increases. Then the fluctuation velocity and angular velocity of fibers were obtained. Both are affected by the fluctuation velocity of turbulence. The fluctuation velocity intensity of fiber is stronger at longitudinal than at lateral, while it was opposite for the fluctuation angular velocity intensity of fibers. Finally, the spatial distribution of fiber was given. It is obvious that the fiber dispersion is strenghened with the increase of Re numbers. 相似文献
3.
A particle imaging technique has been used to collect droplet displacement statistics in a round turbulent jet of air. Droplets are injected on the jet axis, and a laser sheet and position-sensitive photomultiplier tube are used to track their radial displacement and time-of-flight. Dispersion statistics can be computed which are Lagrangian or Eulerian in nature. The experiments have been simulated numerically using a second-order closure scheme for the jet and a stochastic simulation for the particle trajectories. Results are presented for non-vaporizing droplets of sizes from 35 to 160 μm. The simulations have underscored the importance of initial conditions and early droplet displacement history on the droplet trajectory for droplets with large inertia relative to the turbulence. Estimates of initial conditions have been made and their effect on dispersion is quantified. 相似文献
4.
In this paper, fiber motion near a planar wall was investigated using a planar shear flow apparatus. Fibers were placed (one
at a time) perpendicular to the flow direction at various locations throughout the flow field. The location and orientation
of each fiber versus time was measured, using an image processing system, until the fiber aligned with the flow direction.
When the centroid of the fiber was located at distances greater than a fiber length from the wall, Jeffery's equations governing
particle motion were verified. For distances less than a fiber length and greater than a fiber diameter from the wall, the
fiber experienced an increased rate of rotation. In this regime, the motion of the fiber could be described by Jeffery's equations
if an increased effective shear rate was used. The effective shear rate was found to increase logarithmically with decreasing
separation distance. The wall effect was higher for longer aspect ratio fibers and was also a function of orientation; fibers
oriented perpendicular to the wall rotated faster than those oriented parallel to the wall at the same separation distance.
Once the fiber aligned with the flow direction, it ceased to rotate within the field of view. In this orientation, the wall
had a stabilizing effect on the fiber. In efforts to relate the increase in shear rate to the aspect ratio of the fiber and
the separation distance between the fiber and a solid wall, a translation model based on the work of De Mestre and Russel
was explored. This model allows one to quantify the increase in shear rate experienced by the fiber due to the presence of
a wall or obstruction in the flow field. However, the model has its limitations and care should be taken when applying this
model outside its realm of validity. When compared to experimental data, the translation model provides a very good estimate
of the increased shear rate experienced by the fiber when it is located less than 2/3 of a fiber length from a planar wall.
Received: 20 April 2000 Accepted: 28 September 2000 相似文献
5.
We have studied the dynamics of non-colloidal short fiber suspensions in bounded shear flow using the Stokesian dynamics simulation. Such particles make up the microstructure of many suspensions for which the macroscopic dynamics are not well understood. The effect of wall on the fiber dynamics is the main focus of this work. For a single fiber undergoing simple shear flow between plane parallel walls the period of rotation was compared with the Jeffrey’s orbit. A fiber placed close to the wall shows significant deviation from Jeffrey’s orbit. The fiber moving near a solid wall in bounded shear flow follows a pole-vaulting motion, and its centroid location from the wall is also periodic. Simulations were also carried out to study the effect of fiber–fiber interactions on the viscosity of concentrated suspensions. 相似文献
6.
Flow-induced fiber orientation and concentration distributions were measured in a concentrated fiber suspension (CFS) and a dilute one (DFS). The channel has a thin slit geometry containing a circular cylinder. In the previous work, many researchers have qualitatively studied fiber orientation and concentration distributions in injection-molded products of fiber-reinforced plastics. In the present work, however, they are quantitatively estimated by direct observation of fibers in the concentrated suspension flow. For the CFS, some fibers rotate in an expansion part between the channel wall and the circular cylinder, and the fiber orientation becomes almost random state. On the other hand, fibers are perfectly aligned along the flow direction owing to the elongational flow near the centerline downstream of the cylinder. The fiber concentration has a flat distribution except near the channel wall and the centerline. For the DFS a minimum in the fiber concentration distribution was clearly observed on the centerline, and two peaks beside the centerline and near the channel wall. This characteristic distribution is caused by the fiber-wall and fiber-cylinder interactions. It is found that the obstacle such as the circular cylinder in the channel significantly affects the fiber orientation downstream of the obstacle for the CFD, while it affects the fiber concentration distribution for the DFS. 相似文献
7.
8.
H. Chanson 《International Journal of Multiphase Flow》1995,21(6):1107-1121
In plunging jet flows and at hydraulic jumps, large quantities of air are entrained at the intersection of the impinging flow and the receiving body of water. The air bubbles are entrained into a turbulent shear layer and strong interactions take place between the air bubble advection/diffusion process and the momentum shear region. New air-water flow experiments were conducted with two free shear layer flows: a vertical supported jet and a horizontal hydraulic jump. The inflows were partially developed boundary layers, characterized by the presence of a velocity potential core next to the entrapment point. In both cases, the distributions of air concentration exhibit a Gaussian distribution profile with an exponential longitudinal decay of the maximum air content. Interestingly, the location of the maximum air content and the half-value band width are identical for both flow situations, i.e. independent of buoyancy effects. 相似文献
9.
Gas-particle two-phase turbulent flow in a vertical duct 总被引:5,自引:0,他引:5
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.
Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents. 相似文献
10.
The development of flow kinematics and fiber orientation distribution from the parabolic velocity profile and isotropic orientation at the channel inlet was computed in multi-disperse suspension flow through a parallel plate channel and their predictions were compared with those of mono- and bi-disperse suspensions. A statistical scheme (orientations of a large number of fibers are evaluated from the solution of the Jeffery equation along the streamlines) was confirmed to be very useful and feasible method to analyze accurately the orientation distribution of fibers in multi-disperse fiber suspension flow as well as mono- and bi-dispersions, instead of direct solutions of the orientation distribution function of fibers or the evolution equation of the orientation tensor which involves a closure equation. It was found that the flow kinematics and the fiber orientation depend completely on both the fiber aspect-ratio and the fiber parameter for multi-disperse suspension when the fiber–fiber and fiber-wall interactions are neglected. Furthermore, the addition of large aspect-ratio fibers as well as an increase in the fiber parameter related to the large aspect-ratio fibers could suppress the complex velocity field and stress distributions which are observed in suspensions containing small aspect-ratio fibers. From a practical point of view, therefore, the mechanical and physical properties of fiber composites should be improved with an increase in the volume fraction of large aspect-ratio fibers. 相似文献
11.
Particle dispersion in a single-sided backward-facing step flow 总被引:8,自引:0,他引:8
The paper describes the particle dispersion in a single-sided backward-facing step flow. Particles of well-known sizes in the diameter range from 1 to 70 μm were suspended in an air flow and the particle motion over a step was measured by mean of a laser-Doppler anemometer. Thus, the local and integral flow quantities, i.e. the mean and turbulent velocity data could be measured precisely. In the experiments, monodispersed particle size distributions were used to exclude particle size related information ambiguity, known as triggering effects or size bias. The results of this study show qualitatively and quantitatively the difference in time-averaged particle dynamics for selected particle sizes in a backward-facing step flow. The experiments show, for different sizes, the changes in the particle velocity field in comparison with the velocity field of the continuous phase deduced from the 1 μm particles, and also imply the strong influences which different particle sizes have on flow data evaluation when size effects are not taken into account with particle-related optical measuring techniques. 相似文献
12.
The optimal transient growth process of perturbations driven by the pressure gradient is studied in a turbulent pipe flow. A new computational method is proposed, based on the projection operators which project the governing equations onto the subspace spanned by the radial vorticity and radial velocity. The method is validated by comparing with the previous studies. Two peaks of the maximum transient growth amplification curve are found at different Reynolds numbers ranging from 20 000 to 250 000. The optimal flow structures are obtained and compared with the experiments and DNS results. The location of the outer peak is at the azimuthal wave number n=1, while the location of the inner peak is varying with the Reynolds number. It is observed that the velocity streaks in the buffer layer with a spacing of 100δv are the most amplified flow structures. Finally, we consider the optimal transient growth time and its dependence on the azimuthal wave length. It shows a self-similar behavior for perturbations of different scales in the optimal transient growth process. 相似文献
13.
B.E. Launder 《International Journal of Heat and Fluid Flow》1982,3(4):171-184
Some of the problems associated with applying currently available viscous flow calculation schemes to turbulent flow in gas-turbine blading and passages are reviewed. These flows pose severe difficulties in both numerics and turbulence modelling, although the main emphasis here is on the latter aspect. Since complex strain fields and strong body forces are an intrinsic part of flow in turbomachinery, it is preferable that the turbulence modelling of these flows be based on an approximation of the Reynolds stress transport equations themselves. Some current views on closure approximations for these equations are discussed. Applications considered include the effects of free stream turbulence and streamline curvature, the mixing of blade wakes, and the three-dimensional flows that arise in a 90° bend and in the corner boundary layer near a blade root 相似文献
14.
IntroductionFlowoffibresuspensionshasbeenveryfamiliarinmanyindustrialfields.Fibreadditivesplayanimportantroleindragreductioninmanytypesofflow[1- 3].Inthesuspensions,somebehavioroftheflowmaybealteredbythefibres.Oneoftheimportantexamplesisthehydrodynamicsta… 相似文献
15.
In this paper, the basic equation of internal long waves in stratified shear flow is derived under Boussinesq assumption,
the first order approximation solution is given for solitary waves with the effects of slowly varying topograph at the sea
bottom, weak stratification and basic shear flow.
The Project Supported by the National Natural Science Foundation of China. 相似文献
16.
In this study, the effect of heat transfer on the compressible turbulent shear layer and shockwave interaction in a scramjet has been investigated. To this end, highly resolved Large Eddy Simulations (LES) are performed to explore the effect of wall thermal conditions on the behavior of a reattaching free shear layer interacting with an oblique shock in compressible turbulent flows. Various wall-to-recovery temperature ratios are considered, and results are compared to the adiabatic wall. It is found that the wall temperature affects the reattachment location and the shock behavior in the interaction region. Furthermore, fluctuating heat flux exhibits a strong intermittent behavior with severe heat transfer compared to the mean, characterized by scattered spots. The distribution of the Stanton number shows a strong heat transfer and complex pattern within the interaction, with the maximum thermal (heat transfer rates) and dynamic loads (root-mean-square wall pressure) found for the case of the cold wall. The analysis of LES data reveals that the thermal boundary condition can significantly impact the wall pressure fluctuations level. The primary mechanism for changes in the flow unsteadiness due to the wall thermal condition is linked to the reattaching shear layer, which agrees with the compressible turbulent boundary layer theory. 相似文献
17.
We present a selection of results from experiments on an air turbulent jet flow, which included measurements of all the three velocity components and their nine gradients with the emphasis on the properties of invariant quantities related to velocity gradients (enstrophy, dissipation, enstrophy generation, etc.). This has been achieved by a 21 hot wire probe (5 arrays x 4 wires and a cold wire), appropriate calibration unit and a 3-D calibration procedure [1]. A more detailed account on the results will be published elsewhere. 相似文献
18.
In the present paper, numerical solution of the two-dimensional unsteady Navier-Stokes equations is used to study the forced
shear flow induced by a spoiler's periodical up and down oscillation on a flat plate. The paper studies the evolution of growing,
shedding, merging and decaying of vortices due to the spoiler's oscillation, particularly the dependence of the forced shear
flow on the reduced frequency. Results show that the reduced frequency is a key factor in controlling the growing and the
shedding of vortices in the shear layer. The instantaneous streamlines and the equi-vorticity contours, as well as the surface
pressure distributions, have also been investigated. Numerical results agree well with corresponding experimental ones. The
study is helpful for understanding the physical mechanism of shear flow control. 相似文献
19.
I. Zuber 《International Journal of Heat and Fluid Flow》1982,3(2):91-99
The governing equations for axially symmetric flow, where the Reynolds stresses are expressed by scalar turbulent viscosity, are the Reynolds equations. The turbulence model k, ? is used in the well-known form for fully developed turbulent flow.The numerical method, a continuation of the MAC system1, is adapted so that even for high Reynolds cell numbers precision (δx2) can be achieved for the steady flow. Irregular cells join the rectangular network on the curved surface. Von Neumann's stability condition of the linearised numerical system is investigated. Special problems concerning the numerical solution of the turbulence model equations are stated and a special procedure is worked out to ensure that the fields k, ? do not converge to physically meaningless values. The program for the computer is universal in that the boundary problems can be assigned by input data.As an example, an axially symmetrical diffuser with an area ratio of widening 1.40 is computed. Fields of velocity and pressure at the wall as well as fields vT and k are assessed. The results are compared with an experiment. The conclusion is that this method is suitable for the problems mentioned in this study as well as for unsteady flow. 相似文献
20.
The complexity of interactions of different origin between particles in dense fluid suspensions limits application of the concepts of classical mechanics for finding a relation between individual particles dynamics, and the macroscopic dynamic response. For this reason, the probability model of suspension flow after a shear flow onset is proposed that incorporates our certain lack of understanding of environments effects. These effects are identified in the model with the random rate of particles arrival to flow. The multiplication rule is used to sweep from the individual particles to the entire system. The resulting probability of the system shift to flow represents well the measured boundary position, separating the flowing suspension from its solid-like state, and proves thus the appropriate choice of representation of the particle interaction effects. 相似文献