首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

2.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

3.
We find the asymptotic behavior of the homogenized coefficients of elasticity for the chess-board structure. In the chess board white and black cells are isotropic and have Lamé constants (, ,) and (, ) respectively. We assume that the black cells are soft, so 0. It turns out that the Poisson ratio for this composite tends to zero with .  相似文献   

4.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

5.
In this paper, a method using the mean velocity profiles for the buffer layer was developed for the estimation of the virtual origin over a riblets surface in an open channel flow. First, the standardized profiles of the mixing length were estimated from the velocity measurement in the inner layer, and the location of the edge of the viscous layer was obtained. Then, the virtual origins were estimated by the best match between the measured velocity profile and the equations of the velocity profile derived from the mixing length profiles. It was made clear that the virtual origin and the thickness of the viscous layer are the function of the roughness Reynolds number. The drag variation coincided well with other results.Nomenclature f r skin friction coefficient - f ro skin friction coefficient in smooth channel at the same flow quantity and the same energy slope - g gravity acceleration - H water depth from virtual origin to water surface - H + u*H/ - H false water depth from top of riblets to water surface - H + u*H/ - I e streamwise energy slope - I b bed slope - k riblet height - k + u*k/ - l mixing length - l s standardized mixing length - Q flow quantity - Re Reynolds number volume flow/unit width/v - s riblet spacing - u mean velocity - u* friction velocity = - u* false friction velocity = - y distance from virtual origin - y distance from top of riblet - y 0 distance from top of riblet to virtual origin - y v distance from top of riblet to edge of viscous layer - y + u*y/ - y + u*y/ - y 0 + u*y 0/ - u + u*y/ - shifting coefficient for standardization - thickness of viscous layer=y 0+y - + u*/ - + u*/ - eddy viscosity - ridge angle - v kinematic viscosity - density - shear stress  相似文献   

6.
The spectrum of the Schrödinger operator of a one-dimensional quantum anharmonic oscillator of mass m is studied. This spectrum consists of simple (nondegenerate) eigenvalues E n , $$n\in {\mathbb N}_0$$ such that n E n + as n + with a certain > 1. The gap parameter =min n (E n E n-1) is in the center of the study. It is proven that this parameter is a continuous function of m; its small mass and large mass asymptotics are found. The influence of the dependence of on m on the stability of systems of interacting quantum anharmonic oscillators is briefly discussed.  相似文献   

7.
In this paper we consider the asymptotic behavior of solutions of the quasilinear equation of filtration as t. We prove that similar solutions of the equation u t = (u )xx asymptotically represent solutions of the Cauchy problem for the full equation u t = [(u)]xx if (u) is close to u for small u.  相似文献   

8.
Suddenly started laminar flow in the entrance region of a circular tube, with constant inlet velocity, is investigated analytically by using integral momentum approach. A closed form solution to the integral momentum equation is obtained by the method of characteristics to determine boundary layer thickness, entrance length, velocity profile, and pressure gradient.Nomenclature M(, , ) a function - N(, , ) a function - p pressure - p* p/1/2U 2, dimensionless pressure - Q(, , ) a function - R radius of the tube - r radial distance - Re 2RU/, Reynolds number - t time - U inlet velocity, constant for all time, uniform over the cross section - u velocity in the boundary layer - u* u/U, dimensionless velocity - u 1 velocity in the inviscid core - x axial distance - y distance perpendicular to the axis of the tube - y* y/R, dimensionless distance perpendicular to the axis - boundary layer thickness - * displacement thickness - /R, dimensionless boundary layer thickness - momentum thickness - absolute viscosity of the fluid - /, kinematic viscosity of the fluid - x/(R Re), dimensionless axial distance - density of the fluid - tU/(R Re), dimensionless time - w wall shear stress  相似文献   

9.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

10.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

11.
The paper presents an exact analysis of the dispersion of a passive contaminant in a viscous fluid flowing in a parallel plate channel driven by a uniform pressure gradient. The channel rotates about an axis perpendicular to its walls with a uniform angular velocity resulting in a secondary flow. Using a generalized dispersion model which is valid for all time, we evaluate the longitudinal dispersion coefficientsK i (i=1, 2, ...) as functions of time. It is shown thatK 1=0 andK 3,K 4, ... decay rapidly in comparison withK 2. ButK 2 decreases with increasing (the dimensionless rotation parameter) for values of upto approximately =2.2. ThereafterK 2 increases with further increase in and its value gets saturated for large values of (say, 500) and does not change any further with increase in . A physical explanation of this anomalous behaviour ofK 2 is given.
Instationäre konvektive Diffusion in einem rotierenden Parallelplattenkanal
Zusammenfassung In dieser Untersuchung wird eine exakte Analyse der Ausbreitung eines passiven Kontaminierungsstoffes in einer zähen Flüssigkeit gegeben, die, befördert durch einen gleichförmigen Druckgradienten, in einem Parallelplattenkanal strömt. Der Kanal rotiert mit gleichförmiger Winkelgeschwindigkeit um eine zu seinen Wänden senkrechte Achse, wodurch sich eine Sekundärströmung ausbildet. Unter Verwendung eines generalisierten, für alle Zeiten gültigen Dispersionsmodells werden die longitudinalen DispersionskoeffizientenK i (i=1, 2, ...) als Funktionen der Zeit ermittelt. Es wird gezeigt, daßK 1=0 gilt und dieK 3,K 4, ... gegenüberK 2 schnell abnehmen.K 2 nimmt ab, wenn , der dimensionslose Rotationsparameter, bis etwa zum Wert 2,2 ansteigt. Danach wächstK 2 mit bis auf einem Endwert an, der etwa ab =500 erreicht wird. Dieses anomale Verhalten vonK 2 findet eine physikalische Erklärung.

List of symbols C solute concentration - D molecular diffusivity - K i longitudinal dispersion coefficients - 2L depth of the channel - P 0 dimensionless pressure gradient along main flow - Pe Péclet number - q velocity vector - Q x,Q y mass flux along the main flow and the secondary flow directions - dimensionless average velocity along the main flow direction - (x, y, z) Cartesian co-ordinates Greek symbols dimensionless rotation parameter - the inclination of side walls withx-axis - kinematic viscosity - fluid density - dimensionless time - angular velocity of the channel - dimensionless distance along the main flow direction - dimensionless distance along the vertical direction - dimensionless solute concentration - integral of the dispersion coefficientK 2() over a time interval  相似文献   

12.
The mixed convection flow in a vertical duct is analysed under the assumption that , the ratio of the duct width to the length over which the wall is heated, is small. It is assumed that a fully developed Poiseuille flow has already been set up in the duct before heat from the wall causes this to be changed by the action of the buoyancy forces, as measured by a buoyancy parameter . An analytical solution is derived for the case when the Reynolds numberRe, based on the duct width, is of 0 (1). This is extended to the case whenRe is 0 (–1) by numerical integrations of the governing equations for a range of values of representing both aiding and opposing flows. The limiting cases, || 1 andR=Re of 0 (1), andR and both large, with of 0 (R 1/3) are considered further. Finally, the free convection limit, large with R of 0 (1), is discussed.
Mischkonvektion in engen senkrechten Rohren
Zusammenfassung Mischkonvektion in einem senkrechten Rohr wird unter der Voraussetzung untersucht, daß das Verhältnis der Rohrbreite zur Länge, über welche die Wand beheizt wird, klein ist. Es wird angenommen, daß sich bereits eine voll entwickelte Poiseuille-Strömung in dem Rohr eingestellt hat, bevor Antriebskräfte, gemessen mit dem Auftriebsparameter , aufgrund der Wandbeheizung die Strömung verändern. Es wird eine analytische Lösung für den Fall erhalten, daß die mit der Rohrbreite als charakteristische Länge gebildete Reynolds-ZahlRe konstant ist. Dies wird mittels einer numerischen Integration der wichtigsten Gleichungen auf den FallRe =f (–1) sowohl für Gleich- als auch für Gegenstrom ausgedehnt. Weiterhin werden die beiden Grenzfälle betrachtet, wenn || 1 undR=Re konstant ist, sowieR und beide groß mit proportionalR 1/3. Schließlich wird der Grenzfall der freien Konvektion, großes mit konstantem R, diskutiert.

Nomenclature g acceleration due to gravity - Gr Grashof number - G modified Grashof number - h duct width - l length of the heated section of the duct wall - p pressure - Pr Prandtl number - Q flow rate through the duct - Q 0 heat transfer on the wally=0 - Q 1 heat transfer on the wally=1 - Re Reynolds number - R modified Reynolds number - T temperature of the fluid - T 0 ambient temperature - T applied temperature difference - u, velocity component in thex-direction - v, velocity component in they-direction - x, co-ordinate measuring distance along the duct - y, co-ordinate measuring distance across the duct - buoyancy parameter - 0 modified buoyancy parameter, 0=R –1/3 - coefficient of thermal expansion - ratio of duct width to heated length, =h/l - (non-dimensional) temperature - w applied temperature on the wally=0 - kinematic viscosity - density of the fluid - 0 shear stress on the wally=0 - 1 shear stress on the wally=1 - stream function  相似文献   

13.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

14.
The results of the hydraulic studies of gas-liquid media, wave processes in two-phase media and critical phenomena are described. Some methodological foundations to describe these media and methods to obtain the basic similarity criteria for the hydraulics and gas-dynamics of bubble suspensions are discussed. A detailed consideration is given for the phase transition processes on interfaces and the interface stability. A relation has been revealed between the wave and critical phenomena in two-phase systems.Nomenclature a thermal diffusivity - Ar Archimedes number - B gas constant - C heat capacity - C p heat capacity at constant pressure - C v heat capacity at constant volume - c 0 acoustic velocity in the mixture - c l acoustic velocity in the liquid - C f flow resistance coefficient - G mass rate of flow - g gravitational acceleration - L latent heat of evaporation - l initial perturbation width - M Mach number - Nu Nusselt number - P pressure - Pr Prandtl number - R bubble radius - (3P 0/R 0 2 f )–1 bubble resonance frequency square - T temperature - U medium motion velocity - W heavy phase velocity - W light phase velocity - We Weber number - heat release coefficient - dispersion coefficient - void fraction - adiabatic index - film thickness - dimensionless film thickness - kinematic viscosity coefficient - dynamical viscosity coefficient - dissipation coefficient in the mixture - dispersion parameter - f liquid phase density - light phase density - heat conductivity - surface tension - frequency, 0 2 =3P 0/ f R 0 2  相似文献   

15.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

16.
We study the modelling of purely conductive heat transfer between a porous medium and an external fluid within the framework of the volume averaging method. When the temperature field for such a system is classically determined by coupling the macroscopic heat conduction equation in the porous medium domain to the heat conduction equation in the external fluid domain, it is shown that the phase average temperature cannot be predicted without a generally negligible error due to the fact that the boundary conditions at the interface between the two media are specified at the macroscopic level.Afterwards, it is presented an alternative modelling by means of a single equation involving an effective thermal conductivity which is a function of point inside the interfacial region.The theoretical results are illustrated by means of some numerical simulations for a model porous medium. In particular, temperature fields at the microscopic level are presented.Roman Letters sf interfacial area of thes-f interface contained within the macroscopic system m2 - A sf interfacial area of thes-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - g vector that maps to s , m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l s,l f microscopic characteristic length m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for thef-phase at thef-s interface - n outwardly directed unit normal vector at the dividing surface. - R 0 REV characteristic length, m - T i macroscopic temperature at the interface, K - error on the external fluid temperature due to the macroscopic boundary condition, K - T * macroscopic temperature field obtained by solving the macroscopic Equation (3), K - V averaging volume, m3 - V s,V f volume of the considered phase within the averaging volume, m3. - mp volume of the porous medium domain, m3 - ex volume of the external fluid domain, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 - x, z spatial coordinates Greek Letters s, f volume fraction - ratio of the effective thermal conductivity to the external fluid thermal conductivity - * macroscopic thermal conductivity (single equation model) kcal/m s K - s, f microscopic thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding toT *, K - spatial deviation temperature K - error in the temperature due to the macroscopic boundary conditions, K - * i macroscopic temperature at the interface given by the single equation model, K - spatial average - s , f intrinsic phase average.  相似文献   

17.
In this paper, the derivation of macroscopic transport equations for this cases of simultaneous heat and water, chemical and water or electrical and water fluxes in porous media is presented. Based on themicro-macro passage using the method of homogenization of periodic structures, it is shown that the resulting macroscopic equations reveal zero-valued cross-coupling effects for the case of heat and water transport as well as chemical and water transport. In the case of electrical and water transport, a nonsymmetrical coupling was found.Notations b mobility - c concentration of a chemical - D rate of deformation tensor - D molecular diffusion coefficient - D ij eff macroscopic (or effective) diffusion tensor - electric field - E 0 initial electric field - k ij molecular tensor - j, j *, current densities - K ij macroscopic permeability tensor - l characteristic length of the ERV or the periodic cell - L characteristic macroscopic length - L ijkl coupled flows coefficients - n i unit outward vector normal to - p pressure - q t ,q t + , heat fluxes - q c ,q c + , chemical fluxes - s specific entropy or the entropy density - S entropy per unit volume - t time variable - t ij local tensor - T absolute temperature - v i velocity - V 0 initial electric potential - V electric potential - x macroscopic (or slow) space variable - y microscopic (or fast) space variable - i local vectorial field - i local vectorial field - electric charge density on the solid surface - , bulk and shear viscosities of the fluid - ij local tensor - ij local tensor - i local vector - ij molecular conductivity tensor - ij eff effective conductivity tensor - homogenization parameter - fluid density - 0 ion-conductivity of fluid - ij dielectric tensor - i 1 , i 2 , i 3 local vectors - 4 local scalar - S solid volume in the periodic cell - L volume of pores in the periodic cell - boundary between S and L - s rate of entropy production per unit volume - total volume of the periodic cell - l volume of pores in the cell On leave from the Politechnika Gdanska; ul. Majakowskiego 11/12, 80-952, Gdask, Poland.  相似文献   

18.
The exact solution of the equation of motion of a circular disk accelerated along its axis of symmetry due to an arbitrarily applied force in an otherwise still, incompressible, viscous fluid of infinite extent is obtained. The fluid resistance considered in this paper is the Stokes-flow drag which consists of the added mass effect, steady state drag, and the effect of the history of the motion. The solutions for the velocity and displacement of the circular disk are presented in explicit forms for the cases of constant and impulsive forcing functions. The importance of the effect of the history of the motion is discussed.Nomenclature a radius of the circular disk - b one half of the thickness of the circular disk - C dimensionless form of C 1 - C 1 magnitude of the constant force - D fluid drag force - f(t) externally applied force - F() dimensionaless form of applied force - F 0 initial value of F - g gravitational acceleration - H() Heaviside step function - k magnitude of impulsive force - K dimensionless form of k - M a dimensionless parameter equals to (1+37#x03C0;s/4f) - S displacement of disk - t time - t 1 time of application of impulsive force - u velocity of the disk - V dimensionless velocity - V 0 initial velocity of V - V t terminal velocity - parameter in (13) - parameter in (13) - (t) Dirac delta function - ratio of b/a - () function given in (5) - dynamical viscosity of the fluid - kinematic viscosity of the fluid - f fluid density - s mass density of the circular disk - dimensionless time - i dimensionless form of t i - dummy variable - dummy variable  相似文献   

19.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

20.
In order to develop criteria for the physical evaluation of wood for soundboards of musical instruments, measurements were made of dynamic Young's modulusE, static Young's modulusE, internal frictionQ –1 in longitudinal direction, and specific gravity for numerous species of broad-leaved wood. From the results obtained, including those of our previous paper on coniferous wood [1], it was found that the suitability of wood for soundboards could be evaluated by the quantity ofQ –1/(E/), and that there were very high correlations betweenQ –1/(E/) andE/, and betweenE andE, regardless of wood species. Consequently, it becomes possible to select practically any wood suitable for soundboards by using the value ofE/, which can be measured easily, and it was derived that the relation betweenE/ andQ –1 of wood could be expressed by an exponential equation regardless of wood species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号