首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present article is the first part of a series devoted to extending the Repeat Space Theory (RST) to apply to carbon nanotubes and related molecular networks. Four key problems are formulated whose affirmative solutions imply the formation of the initial investigative bridge between the research field of nanotubes and that of the additivity and other network problems studied and solved by using the RST. All of these four problems are solved affirmatively by using tools from the RST. The Piecewise Monotone Lemmas (PMLs) are cornerstones of the proof of the Fukui conjecture concerning the additivity problems of hydrocarbons. The solution of the fourth problem gives a generalized analytical formula of the pi-electron energy band curves of nanotube (a, b), with two new complex parameters c and d. These two parameters bring forth a broad class of analytic curves to which the PMLs and associated theoretical devices apply. Based on the above affirmative solutions of the problems, a central theorem in the RST, called the asymptotic linearity theorem (ALT) has been applied to nanotubes and monocyclic polyenes. Analytical formulae derived in this application of the ALT illuminate in a new global context (i) the conductivity of nanotubes and (ii) the aromaticity of monocyclic polyenes; moreover an analytical formula obtained by using the ALT provides a fresh insight into Hückel’s (4n+2) rule. The present article forms a foundation of the forthcoming articles in this series. The present series of articles is closely associated with the series of articles entitled ‘Proof of the Fukui conjecture via resolution of singularities and related methods’ published in the JOMC.  相似文献   

2.
A new gallium (Ga(III)) ion-imprinted multi-walled carbon nanotubes (CNTs) composite sorbent was synthesized by a surface imprinting technique. The Ga(III) ion-imprinted/multi-walled carbon nanotubes (Ga(III)-imprinted/CNTs) sorbent was characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), nitrogen adsorption experiment, static adsorption experiment, and solid-phase extraction (SPE) experiment. The effects of sample volume, sample pH, washing and elution conditions on the extraction of Ga(III) ion from real sample were studied in detail. The imprinted sorbent offered a fast kinetics for the adsorption of Ga(III). The maximum static adsorption capacity of the imprinted sorbent towards was 58.8 μmol g−1. The largest selectivity coefficient for Ga(III) in the presence of Al(III) was over 57.3. Compared with non-imprinted sorbent, the imprinted sorbent showed good imprinting effect for Ga(III) ion, the imprinting factor (α) was 2.6, the selectivity factor (β) was 2.4 and 2.9 for Al(III) and Zn(II), respectively. The developed imprinted SPE method was applied successfully to the detection of trace Ga(III) ion in fly ash samples with satisfactory results.  相似文献   

3.
4.
A new hierarchical composite consisted of multi-walled carbon nanotubes (CNTs) layer anchored on macroscopic α-Al2O3 host matrix was synthesized and used as support for Fischer-Tropsch synthesis (FTS). The composite constituted by a thin shell of a homogeneous, highly entangled and structure-opened carbon nanotubes network and it exhibited a relatively high and fully accessible specific surface area of 76 m2·g?1, compared with that of 5 m2·g?1 of the original α-Al2O3 support. The metal-support interaction between carbon nanotubes surface and cobalt precursor and high effective surface area led to a relatively high dispersion of cobalt nanoparticles. This hierarchically supported cobalt catalyst exhibited a high FTS activity along with an extremely high selectivity towards liquid hydrocarbons compared with the cobalt-based catalyst supported on pristine α-Al2O3 or on CNTs carriers. This improvement can attribute to the high accessibility of composite surface area comparing with the macroscopic host structure alone or to the bulk CNTs where the nanoscopic dimension induced a dense packing with low mass transfer which favoured the problem of reactants competitive diffusion towards the cobalt active site. In addition, intrinsic thermal conductivity of decorated CNTs could help the heat dissipating throughout the catalyst body, thus avoiding the formation of local hot spots which appeared in high CO conversion under pure syngas feed in FTS reaction. Cobalt supported on CNTs decorated α-Al2O3 catalyst also exhibited satisfied high stability during more than 200 h on stream under relatively severe conditions compared with other catalysts reported in the literature. Finally, the macroscopic shape of such composite easily rendered its usage as catalyst support in a fixed-bed configuration without facing problems of transport and pressure drop as encountered with the bulk CNTs.  相似文献   

5.
Xueling Li  Jianshan Ye 《Electroanalysis》2008,20(17):1917-1924
Carbon nanotubes (CNTs) are widely used in electrochemical studies. It is reported that CNTs with different source and dispersed in different agents [1] yield significant difference of electrochemical reactivity. Here we report on the electrochemical performance of CNTs paste electrodes (CNTPEs) prepared by multiwalled carbon nanotubes (MWNTs) with different diameters, lengths and functional groups. The resulting electrodes exhibit remarkable different electrochemical reactivity towards redox molecules such as NADH and K3[Fe(CN)6]. It is found that CNTPEs prepared by MWNTs with 20–30 nm diameter show highest catalysis to NADH oxidation, while CNTPEs prepared by MWNTs with carboxylate groups have best electron‐transfer rate (The peak‐peak separation (ΔEp) is +0.108 V for MWNTs with carboxylate groups, +0.155 V for normal MWNTs, and +0.174 V for short MWNTs) but weak catalysis towards oxidation of NADH owing to the hydrophilicity of carboxylate groups. The electrochemical reactivity depends on the lengths of CNTs to some extent. The ‘long’ CNTs perform better in our study (The oxidation signals of NADH appear below +0.39 V for ‘long’ CNTs and above +0.46 V for the ‘short’ one totally). Readers may get some directions from this article while choose CNTs for electrochemical study.  相似文献   

6.
Ring-opening surface initiated polymerization of l-proline N-carboxyanhydride was performed from amine functionalized single (SWNTs) and multi walled carbon nanotubes (MWNTs). The primary amines were grafted on the surfaces via a well-studied Diels–Alder cycloaddition. The initiator attachment helped the debundling of carbon nanotubes as shown by atomic force microscopy (AFM) studies where only small aggregates were observed. Thermogravimetric analysis revealed high wt% of grafted polyproline on the carbon nanotubes surface after the ring-opening polymerization. AFM studies showed a rather uniform layer of grafted polyproline from both MWNTs and SWNTs. The grafting of PLP on the surface was also verified by FTIR and Raman spectroscopy as well as 1H NMR in CDCl3/d-TFA. The polyproline grafted carbon nanotubes (CNTs) were readily dissolved in organic solvents in contrast to the insoluble pristine and amine-functionalized CNTs.  相似文献   

7.
In this work, new results concerning the potential of mixtures based on nitrogen doped titanium dioxide (TiO2:N) and carbon nanotubes (CNTs) as possible catalyst candidates for the rhodamine B (RhB) UV photodegradation are reported. The RhB photodegradation was evaluated by UV–VIS absorption spectroscopy using samples of TiO2:N and CNTs of the type of single-walled carbon nanotubes (SWNTs), double-wall carbon nanotubes (DWNTs), multi-wall carbon nanotubes (MWNTs), and single-walled carbon nanotubes functionalized with carboxyl groups (SWNT-COOH) having various concentrations of CNTs. The best photocatalytic performance was obtained for sample containing TiO2:N and 2.5 wt.% SWNTs-COOH, when approx. 85% of dye removal was achieved after 300 min. of UV irradiation. The reaction kinetics of RhB aqueous solutions containing TiO2:N/CNT mixtures followed a complex first-order kinetic model. The TiO2:N/CNTs catalyst induced higher photodegradation efficiency of RhB than TiO2:N due to the presence of CNTs, which act as adsorbent and dispersing agent and capture the photogenerated electrons of TiO2:N hindering the electron–hole recombination.  相似文献   

8.
Gold nanoparticles were deposited electrolessly on multiwalled carbon nanotubes (CNTs) via in situ reduction of HAuCl4 by NaBH4. The resulting gold covered nanotubes were immobilised onto the surface of a glassy carbon electrode via evaporation of a suspension in chloroform. Anodic stripping voltammetry was performed with the modified electrode in As(III) solutions. A limit of detection (LOD based on 3σ) of 0.1 μg L−1 was obtained but more importantly a sensitivity of 1985 μA μM−1 was obtained with square wave voltammetry (SWV) in an optimised system with a deposition time of 120 s. These values, particularly the high sensitivity compare favourably with previously reported methods in the area of electrochemical arsenic detection.  相似文献   

9.
The latest progress of using carbon nanotubes (CNTs) for in vivo cancer nanotechnology is reviewed. CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications. In vivo behaviors and toxicology studies of CNTs are summarized, suggesting no significant toxicity of well functionalized CNTs to the treated mice. Owing to their unique chemical and physical properties, CNTs, especially single-walled carbon nanotubes (SWNTs), have been widely used for various modalities of in vivo cancer treatment and imaging. Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.  相似文献   

10.
A research was performed to evaluate the capabilities of carbon nanotubes (CNTs) and modified CNTs to serve as sorbents for preconcentrating Cd together with on-line ultrasonic nebulization (USN)-inductively coupled plasma optical emission spectrometry (ICPOES). Three different carbon nanotubes sustrates namely, carbon nanotubes (CNTs), oxidized-carbon nanotubes (ox-CNTs) and l-alanine-carbon nanotubes (ala-CNTs) were studied systematically and the main factors influencing the preconcentration and determination of Cd were examined thoroughly. The CNTs evaluated showed dissimilar adsorption behaviors leading to increasing preconcentration factors when used in the proposed on-line solid phase extraction (SPE) system as follows: CNT < ala-CNT < ox-CNT. Aiming to achieve the best analytical performance, ox-CNTs were used as they enable quantitative retention of Cd at pH 7.0 and instantaneous elution of the analyte with 10% HNO3. Under optimal conditions, the adsorption capacity on ox-CNTs was found to be 130 μmol g?1 and the detection limit (3σ) achieved was 1.03 μg L? 1. The precision of the method expressed as the relative standard deviation (RSD) turned to be 3.0%. The flow injection method involving use of ox-CNTs as sorbent and USN-ICPOES for detection was successfully applied to the determination of Cd in different kinds of environmental samples.  相似文献   

11.
The dispersion effect of carbon nanotubes (CNTs) in aqueous solutions by a silicon surfactant (ethoxy modified trisiloxane, named Ag-64) was investigated in detail using experimental method and molecular dynamics simulation. The Si–O–Si chain of silicon surfactant was flexible due to long Si–C bond and it could easily wrap onto the surface of CNTs through hydrophobic and other intermolecular interactions. The hydrophilic part of PEO provided the CNTs dispersed in the aqueous solution and prevented CNTs from aggregating in water through steric stabilization. It was found that Ag-64 could disperse CNTs with different diameters and it was an effective dispersing agent. The results of molecular dynamics simulation indicated that Ag-64 molecules could wrap onto the surface of CNTs leading to steric stabilization so that it could well disperse CNTs, and Van der Waals attraction was the dominating force of Ag-64 adsorbing onto CNTs. Our study may provide experimental and theoretical basis for using silicon surfactants to disperse CNTs, which can open the avenue of new applications for silicon surfactants.  相似文献   

12.
The enrichment ability of carbon nanotubes (CNTs) was investigated and a new method established for the determination of trace thallium species in environmental samples using electrothermal atomization-atomic absorption spectrometry (ETAAS). The CNTs were employed as sorbent substrate in a continuous flow system coupled to ETAAS. Parameters influencing the recoveries of thallium were optimized. Under optimal conditions, the detection limit and precision of the method were 0.009 µg L?1 and 3.9%, respectively. The method was applied to the determination of thallium in real environmental samples and the recoveries were in the range from 96 to 100%. This system was able to separate thallium (I) from the matrix, which allowed its selective determination. The total thallium content was then determined by reducing Tl(III) with hydroxylamine. All these experimental results indicated that this new procedure can be applied to the determination of trace thallium in drinking water samples.  相似文献   

13.
Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red–orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.  相似文献   

14.
Wang CH  Li J  Yao SJ  Guo YL  Xia XH 《Analytica chimica acta》2007,604(2):158-164
In matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) analyses of small oligosaccharides and amino acids, high sensitivities for oligosaccharides (10 fmol) were obtained by introducing oxidized carbon nanotubes (CNTs) with short and open-end structure as valuable matrix. The CNTs were deposited in porous anodic alumina (PAA) templates by chemical vapor deposition. Transmission electron microscopy (TEM) images show that those CNTs include low levels of amorphous carbon. Thus, the background interference signals generally caused by amorphous carbon powder in CNTs can be reduced effectively. Experiments also confirmed that the FTMS signal intensity of CNTs prepared in PAA template is much lower than that of commercial multi-wall carbon nanotubes (MCNTs). Moreover, the purified process for CNTs with mixed acid (H2SO4 and HNO3) also contributed to the minimization of background. Intense signals corresponding to alkali cation adduct of neutral carbohydrates and amino acids have been acquired. In addition, reliable quantitative analyses for urine and corn root were also achieved successfully. The present work will open a new way to the application of oxidized CNTs as an effective matrix in MALDI MS research.  相似文献   

15.
The 3-D composite electrodes consisting of Pt nanoparticles supported on nitrogen-doped carbon nanotubes (CNx) grown directly on carbon paper were successfully prepared. The effect of the nitrogen atom incorporation in carbon nanotubes (CNTs) on the Pt nanoparticle dispersion and catalytic activities for the oxygen reduction reaction has been investigated. Compared to regular CNTs, highly dispersed Pt nanoparticles with smaller size (2–3 nm) and higher electrochemical Pt surface area as well as higher fuel cell performance were obtained for CNx.  相似文献   

16.
《中国化学快报》2020,31(10):2641-2644
The high cost and low reserves of noble metals greatly hinder their practical applications in new energy production and conversion. The exploration of cost-effective alternative electrocatalysts with the ability to drive hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely significant to promote overall water splitting. Herein, ultrathin CoSe2/CNTs nanocomposites have been synthesized by a facile two-step method, where the ultrathin Co-MOF (metal organic-framework) decorated with cable-like carbon nanotubes (CNTs) (Co-MOF/CNTs) was initially fabricated, and followed a low-temperature selenization process. The ultrathin CoSe2 nanosheets as well as the superior conductivity of CNTs synergistically resulted in abundant active sites and enhanced conductivity to boost the electrocatalytic activity. The as-prepared CoSe2/CNTs electrocatalysts exhibited an overpotential of 190 mV and 300 mV vs. reversible hydrogen electrode (RHE) at a current density of 10 mA/cm2 for the HER and OER in alkaline solution, respectively, and demonstrated superior durability. Furthermore, the as-prepared bifunctional CoSe2/CNTs electrocatalysts can act as cathode and anode in an electrolyzer, showing a cell voltage of 1.75 V at 10 mA/cm2 for overall water splitting.  相似文献   

17.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

18.
The selective adsorption of carbon nanotubes (CNTs) on a pH-reversible PDMAEMA patterned gold surface is presented. In acidic conditions, a selective CNTs adsorption onto the polymer brushes is obtained due to ammonium-π interactions. The reversible behavior was shown by successive treatments in both alkaline and acidic solutions with CNTs.  相似文献   

19.
We describe a microbial sensor based on Pseudomonas fluorescens cells that was prepared by modifying graphite electrodes with chitosan and carbon nanotubes. Chronoamperometry was performed at +0.3 V in the presence of hexacyanoferrate as a mediator and revealed a good response to glucose which is linear in the 1.0 to 5.0 mM concentration range. Linearity was defined by the equation of y?=?102.120x?13.279 (R 2?=?0.998) (y shows current density as nA.cm?2 and x shows glucose concentration in mM). The effect of the CNTs on the response was compared to that of electrodes made without CNTs.
Figure
A mediated microbial sensor that was prepared by modifying graphite electrodes with chitosan and carbon nanotube and Pseudomonas fluorescens cells has been described. As well as some parameters (pH, mediator and cell amount etc), the effect of CNTs on the response was compared to that of electrodes made without CNTs.  相似文献   

20.
Bilirubin adsorption on carbon nanotube surfaces has been studied to develop a new adsorbent in the plasma apheresis. Powder-like carbon nanotubes were first examined under various adsorption conditions such as temperatures and initial concentrations of bilirubin solutions. The adsorption capacity was measured from the residual concentrations of bilirubin in the solution after the adsorption process using a visible absorption spectroscopy. We found that multi-walled carbon nanotubes (MWCNTs) exhibit greater adsorption capacity for bilirubin molecules than that of single-walled carbon nanotubes (SWCNTs). To guarantee the safety of the adsorbents, we fabricated carbon nanotube sheets in which leakage of CNTs to the plasma is suppressed. Since SWCNTs are more suitable for robust sheets, a complex sheet consisting of SWCNTs as the scaffolds and MWCNTs as the efficient adsorbents. CNT/polyaniline complex sheets were also fabricated. Bilirubin adsorption capacity of CNTs has been found to be much larger than that of the conventional materials because of their large surface areas and large adsorption capability for polycyclic compound molecules due to their surface structure similar to graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号