首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The symmetry-itemized enumeration of quadruplets of stereoisograms is discussed by starting from a tetrahedral skeleton, where the partial-cycle-index (PCI) method of the unit-subduced-cycle-index approach (Fujita in Symmetry and combinatorial enumeration of chemistry. Springer, Berlin, 1991) is combined with the stereoisogram approach (Fujita in J Org Chem 69:3158–3165, 2004, Tetrahedron 60:11629–11638, 2004). Such a tetrahedral skeleton as contained in the quadruplet of a stereoisogram belongs to an RS-stereoisomeric group denoted by $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ , where the four positions of the tetrahedral skeleton accommodate achiral and chiral proligands to give quadruplets belonging to subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ according to the stereoisogram approach. The numbers of quadruplets are calculated as generating functions by applying the PCI method. They are itemized in terms of subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ , which are further categorized into five types. Quadruples for stereoisograms of types I–V are ascribed to subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ , where their features are discussed in comparison between RS-stereoisomeric groups and point groups.  相似文献   

5.
Fujita’s proligand method developed originally for combinatorial enumeration under point groups (Fujita in Theor Chem Acc 113:73–79, 2005) is extended to meet the group hierarchy, which stems from the stereoisogram approach for integrating geometric aspects and stereoisomerism in stereochemistry (Fujita in J Org Chem 69:3158–3165, 2004). Thereby, it becomes applicable to enumeration under respective levels of the group hierarchy. Combinatorial enumerations are conducted to count inequivalent pairs of (self-)enantiomers under a point group, inequivalent quadruplets of RS-stereoisomers under an RS-stereoisomeric group, inequivalent sets of stereoisomers under a stereoisomeric group, and inequivalent sets of isoskeletomers under an isoskeletal group. In these enumerations, stereoskeletons of ligancy 4 are used as examples, i.e., a tetrahedral skeleton, an allene skeleton, an ethylene skeleton, an oxirane skeleton, a square planar skeleton, and a square pyramidal skeleton. Two kinds of compositions are used for the purpose of representing molecular formulas in an abstract fashion, that is to say, the compositions for differentiating proligands having opposite chirality senses and the compositions for equalizing proligands having opposite chirality senses. Thereby, the classifications of isomers are accomplished in a systematic fashion.  相似文献   

6.
7.
8.
Among the four methods of the unit-subduced-cycle-index (USCI) approach (Fujita in Symmetry and Combinatorial Enumeration in Chemistry. Springer, Berlin, Heidelberg, 1991), the fixed-point-matrix (FPM) method and the partial-cycle-index (PCI) method have been applied to the combinatorial enumeration of prismane derivatives. These enumeration processes are based on the proligand-promolecule model, which enables us to take account of achiral and chiral proligands. Prochirality in a geometric meaning has been discussed in general by emphasizing the presence of enantiospheric orbits in enumerated prismane derivatives. An enantiospheric orbit accommodating chiral proligands (along with achiral ones) has been shown to exhibit prochirality by using various prismane derivatives as examples. On the other hand, the scope of pseudoasymmetry has been extended to cover such a rigid skeleton as prismane in addition to a usual pseudoasymmetric center as a single atom, where the proligand-promolecule model plays an essential role.  相似文献   

9.
《Tetrahedron: Asymmetry》2014,25(16-17):1190-1204
The stereoisogram approach is introduced to settle the misleading terminology due to ‘prochirality’ in modern stereochemistry. After the term prochirality is redefined as having a purely geometric meaning, a method based on probe stereoisograms and another method based on equivalence classes (orbits) are introduced to determine prochirality and/or pro-RS-stereogenicity. Enantiotopic and RS-diastereotopic relationships appearing in probe stereoisograms are respectively used to determine prochirality and pro-RS-stereogenicity, where ‘stereoheterotopic’ relationships used in modern stereochemistry are abandoned. Alternatively, an enantiospheric orbit for specifying prochirality and an RS-enantiotropic orbit for specifying pro-RS-stereogenicity are emphasized by using coset representations and Young tableaux. The pro-R/pro-S-system is clarified to be based on pro-RS-stereogenicity and not on prochirality.  相似文献   

10.
The RS-stereoisomeric group $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ is examined to characterize quadruplets of RS-stereoisomers based on a tetrahedral skeleton and found to be isomorphic to the point group $\mathbf{O}_{h}$ of order 48. The non-redundant set of subgroups (SSG) of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ is obtained by referring to the non-redundant SSG of $\mathbf{O}_{h}$ . The coset representation for characterizing the orbit of the four positions of the tetrahedral skeleton is clarified to be $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{3v\widetilde{\sigma }\widehat{I}})$ , which is closely related to the $\mathbf{O}_{h}(/\mathbf{D}_{3d})$ . According to the unit-subduced-cycle-index (USCI) approach (Fujita in Symmetry and combinatorial enumeration in chemistry. Springer, Berlin, 1991), the subdution of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{3v\widetilde{\sigma }\widehat{I}})$ is examined so as to generate unit subduced cycle indices with chirality fittingness (USCI-CFs). The fixed-point matrix method of the USCI approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion with respect to the subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ . After the subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ are categorized into types I–V, type-itemized enumeration of quadruplets is conducted to illustrate the versatility of the stereoisogram approach.  相似文献   

11.
After the RS-stereoisomeric group \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) of order 16 has been defined by starting point group \(\mathbf{D}_{2d}\) of order 8, the isomorphism between \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) and the point group \(\mathbf{D}_{4h}\) of order 16 is thoroughly discussed. The non-redundant set of subgroups (SSG) of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) is obtained by referring to the non-redundant set of subgroups of \(\mathbf{D}_{4h}\) . The coset representation for characterizing the orbit of the four positions of an allene skeleton is clarified to be \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{s\widetilde{\sigma }\widehat{I}})\) , which is closely related to the \(\mathbf{D}_{4h}(/\mathbf{C}_{2v}^{\prime \prime \prime })\) . According to the unit-subduced-cycle-index (USCI) approach (Fujita, Symmetry and combinatorial enumeration of chemistry. Springer, Berlin 1991), the subduction of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{s\widetilde{\sigma }\widehat{I}})\) is examined so as to generate unit subduced cycle indices with chirality fittingness (USCI-CFs). Then, the fixed-point matrix method of the USCI approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion with respect to the subgroups of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) . After the subgroups of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) are categorized into types I–V, type-itemized enumeration of quadruplets is conducted to illustrate the versatility of the stereoisogram approach.  相似文献   

12.
13.
The I-SMB process is one of the modifications to the standard SMB process that has been demonstrated both theoretically and experimentally to exhibit rather competitive performance (Katsuo and Mazzotti in J Chromatogr A 1217:1354, 2010a, 3067, 2010b; Katsuo et al. in J Chromatogr A 1218:9345, 2011). This work aims at showing that also the I-SMB process can be controlled and optimized by using the optimizing on-line controller developed at ETH Zurich for the standard SMB process (Erdem et al. in Ind Eng Chem Res 43:405, 2004a, 3895, 2004b; Grossmann et al. in Adsorption 14:423, 2008, AIChE J 54:1942008). This is achieved by using a virtual I-SMB unit based on a detailed model of the process; past experience with the on-line controller shows that the controller’s behavior on a virtual platform is essentially the same as in laboratory experiments.  相似文献   

14.
15.
In García Guirao and Lampart (J Math Chem 48:159–164, 2010) presented a lattice dynamical system stated by Kaneko (Phys Rev Lett 65:1391–1394, 1990) which is related to the Belusov–Zhabotinskii reaction. In this note, we give an example which shows that the proofs of Theorems 3.1 and 3.2 in [J Math Chem 51:1410–1417, 2013] are incorrect, and two open problems.  相似文献   

16.
These two concepts, maturity in chemistry and rationality in group theory were discovered by a chemist, Fujita. In the present study, we introduce a new approach to maturity and immaturity of simple groups, using the deep theorem (Feit and Seitz in Ill J Math 33:101–131, 1988). Additionally, we prove that 1,3,5-trimethyl-2,4,6-trinitrobenzene are always unmatured and tetra platinum(II) with point group $D_{2n}$ , dihedral group of order $2n$ , is unmatured if $n\ne 1,2,3,4,6$ . Also, we compute integer-valued characters of the simple sporadic group $Ly$ .  相似文献   

17.
18.
19.
García Guirao and Lampart (J Math Chem 48:66–71, 2010; J Math Chem 2 48:159–164, 2010) said that for non-zero couplings constant, the lattice dynamical system is more complicated. Motivated by this, in this paper, we prove that this coupled lattice system is distributionally (p, q)-chaotic for any pair 0?≤ p?≤ q?≤ 1 and its principal measure is not less than ${\frac{2}{3} + \sum_{n=2}^{\infty} \frac{1}{n} \frac{2^{n-1}}{(2^{n}+1)(2^{n-1}+1)}}$ for coupling constant ${0 < \epsilon < 1}$ .  相似文献   

20.
Garca Guirao and Lampart (J Math Chem 48:66–71, 2010; J Math Chem 48:159–164, 2010) said that for non-zero couplings constant, the lattice dynamical system is more complicated. Motivated by this, in this paper, we prove that this coupled map lattice system is Li–Yorke chaotic for coupling constant ${0 < \epsilon <1 }$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号