首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We will provide an overview of the synthesis, structures, chemical and physical properties of novel iron oxides bearing FeO(4) square planar coordination, such as SrFeO(2) and Sr(3)Fe(2)O(5). The preparation of these materials relies on topotactic low-temperature reduction using metal hydrides. For instance, a simple 3D perovskite structure SrFeO(3) converts to a 2D structure SrFeO(2)via SrFeO(2.5). SrFeO(2) shows a remarkable stability against temperature and chemical substitution (for both A- and B-sites) and also tolerates distortions of square planes toward tetrahedra to adapt different A sites. Such structural stability and flexibility arise from strong covalent interactions not only through the in-plane Fe-O-Fe superexchange interactions but also through the out-of-plane Fe-Fe direct exchange interactions, and explains why SrFeO(2) exhibits magnetic order far beyond room temperature. The application of pressure on SrFeO(2) and Sr(3)Fe(2)O(5) further enhances the Fe-Fe direct exchange interactions and eventually induces striking transitions at around 34 GPa: spin-state transition from S = 2 to S = 1, insulator-to-metal transition, and antiferro-to-ferromagnetic transition. The high mobility of oxide ions at relatively low temperatures, during the reduction and reoxidation reaction process would offer an important challenge to tailor and design new solid oxide fuel cells/membranes toward lowering working temperatures.  相似文献   

2.
The structure of oxygen-intercalated La2CuO4.07 has been investigated at 20 and 300?K by neutron diffraction on an electrochemically oxidized single crystal. At 20?K, reconstruction of the nuclear density by maximum entropy method shows strong displacements of the apical oxygen atoms towards [100] with respect to the F-centred unit cell, whilst displacements towards [110] and [100] were both found to be present at ambient temperature. Combining structural studies with first-principles lattice dynamical calculations, we interpret the displacements of the apical oxygen atoms to be at least partially of dynamic origin already at ambient temperature. Strong displacements of the apical oxygen atoms of stoichiometric and oxygen-doped $ {\hbox{L}}{{\hbox{a}}_{{2}}}{\hbox{Cu}}{{\hbox{O}}_{{{4} + \delta }}} $ and corresponding associated lattice instabilities, i.e. low-energy phonon modes, are considered as a general prerequisite of low-temperature oxygen diffusion mechanisms. Lattice dynamical calculations on $ {\hbox{L}}{{\hbox{a}}_{{2}}}{\hbox{Cu}}{{\hbox{O}}_{{{4} + \delta }}} $ suggest that the oxygen species diffusing at low temperature are not the interstitial but, more prominently, the apical oxygen atoms. The presence of interstitial oxygen atoms is, however, important to amplify via specific, low-energy phonon modes, a dynamic exchange mechanism between apical and vacant interstitial oxygen sites, thus allowing a dynamically triggered, shallow potential oxygen diffusion pathway. The crucial role of lattice dynamics to enable low-temperature oxygen mobility in K2NiF4-type oxides is discussed on a microscopic scale and compared to similar low-temperature oxygen diffusion mechanisms, recently proposed for non-stoichiometric oxides with Brownmillerite-type structure.  相似文献   

3.
The perovskites LaMnO(3) and CaFeO(3) consisting of high-spin d(4) transition metal ions undergo different types of distortions, i.e., a Jahn-Teller distortion in LaMnO(3) and a charge disproportionation in CaFeO(3). We investigated the electronic factor causing this difference on the basis of first principles spin-polarized electronic band structure calculations for their ideal cubic structures and also tight-binding electronic band structure calculations for their ideal cubic and distorted structures. Our study shows that a charge disproportionation is favored over a Jahn-Teller distortion in CaFeO(3) because the covalent character is strong in the Fe-O bond, while the opposite is true for LaMnO(3) because the covalent character is weak in the Mn-O bond. In spin-polarized electronic band structure calculations, the covalency of the M-O (M = Fe, Mn) bond is enhanced in the up-spin bands but is reduced in the down-spin bands. Our analysis shows that electron-electron repulsion causes the energy gap between the metal 3d and the oxygen 2p orbitals to become larger for the down-spin than for the up-spin-orbital interactions. Thus in the d-block e(g) bands of both LaMnO(3) and CaFeO(3) the metal 3d orbital contribution is larger in the down-spin than in the up-spin bands.  相似文献   

4.
IntroductionTheutilizationofalkanetoproduceintermediatechemicalsisalwaysatractive.Thefunctionalizationoflightparafinbycatalyt...  相似文献   

5.
Oxygen species and their reactivity in La1 − x Sr x FeO3 − y perovskites prepared using mechanochemical activation were studied by temperature-programmed reduction (TPR) with hydrogen and methane. The experimental data were compared with data on the catalytic activity in oxidation reactions. It was found that the rates of CO and methane oxidation on the perovskites in the presence of gas-phase oxygen correlated (k = 0.8) with the amount of reactive surface oxygen species that were removed by TPR with hydrogen up to 250°C. Maximum amounts of this oxygen species were released from two-phase samples (x = 0.3, 0.4, and 0.8), which exhibited an enhanced activity in the reaction of CO oxidation. In the absence of oxygen in the gas phase, methane is oxidized by lattice oxygen. In this case, the process activity and selectivity depend on the mobility of lattice oxygen, which is determined by the temperature, the degree of substitution, the degree of reduction, and the microstructure of the oxide. Thus, the high mobility of oxygen, which is reached at high concentrations of point defects or interphase/domain boundaries, is of importance for the process of deep oxidation. However, the process of partial oxidation occurs in single-phase samples at low degrees of substitution (x = 0.1–0.2). __________ Translated from Kinetika i Kataliz, Vol. 46, No. 5, 2005, pp. 773–779. Original Russian Text Copyright ? 2005 by Isupova, Yakovleva, Alikina, Rogov, Sadykov.  相似文献   

6.

Abstract  

This article focuses on perovskite materials for application as cathode material in solid oxide fuel cells. In order to develop new promising materials it is helpful to classify already known perovskite materials according to their properties and to identify certain tendencies. Thereby, composition-dependent structural data and materials properties are considered. Structural data under consideration are the Goldschmidt tolerance factor, which describes the stability of perovskites with respect to other structures, and the critical radius and lattice free volume, which are used as geometrical measures of ionic conductivity. These calculations are based on the ionic radii of the constituent ions and their applicability is discussed. A potential map of perovskites as a tool to classify simple ABO3 perovskite materials according to their electrical conduction behavior is critically reviewed as a structured approach to the search for new cathode materials based on more complex perovskites with A and/or B-site substitutions. This article also covers the approaches used to influence electronic and the ionic conductivity. The advantage of mixed ionic electronic conductors in terms of the oxygen exchange reaction is addressed and their important properties, namely the oxygen-exchange coefficient and the oxygen diffusion coefficient, and their effect on the oxygen reduction reaction are presented.  相似文献   

7.
锰掺杂六铝酸镧催化剂上甲苯催化燃烧净化研究   总被引:1,自引:0,他引:1  
采用共沉淀法制备了系列锰掺杂六铝酸镧LaMnxAl12-xO19催化剂。XRD表征发现,只有在锰掺杂量为2.0~2.5时,经1200 ℃焙烧处理得到的催化剂中才有完整的六铝酸盐晶相。由UV-vis漫反射、H2-TPR和BET比表面积分析表明,掺杂的锰离子主要以Mn3+形式取代六铝酸盐八面体位置的Al;同时随锰掺杂量增多,催化剂中Mn3+/Mn2+比例变大,而比表面积却相应减小。O2-TPD表征也进一步发现,随锰掺杂量增多,催化剂上化学吸附晶格氧量增加,而物理吸附氧分子量减少。在甲苯催化燃烧净化反应中,锰掺杂六铝酸镧催化剂表现出良好的低温催化活性,且锰掺杂量为2.0~2.5时活性最优。推测该反应是遵循Mars-van Krevelen机理,由Mn3+和Mn2+的协同作用共同促进晶格氧的流动性。  相似文献   

8.
The role of framework oxygen atoms in N2O decomposition [N2O(g)→N2(g) and 1/2O2(g)] over Fe‐ferrierite is investigated employing a combined experimental (N218O decomposition in batch experiments followed by mass spectroscopy measurements) and theoretical (density functional theory calculations) approach. The occurrence of the isotope exchange indicates that framework oxygen atoms are involved in the N2O decomposition catalyzed by Fe‐ferrierite. Our study, using an Fe‐ferrierite sample with iron exclusively present as FeII cations accommodated in the cationic sites, shows that the mobility of framework oxygen atoms in the temperature range: 553 to 593 K is limited to the four framework oxygen atoms of the two AlO4? tetrahedra forming cationic sites that accomodate FeII. They exchange with the Fe extra‐framework 18O atom originating from the decomposed N218O. We found, using DFT calculations, that O2 molecules facilitate the oxygen exchange. However, the corresponding calculated energy barrier of 87 kcal mol?1 is still very high and it is higher than the assumed experimental value based on the occurrence of the sluggish oxygen exchange at 553 K.  相似文献   

9.
The steady-state CH4 conversion by oxygen permeating through mixed-conducting (SrFe)0.7(SrAl2)0.3Oz composite membranes, comprising strontium-deficient SrFe(Al)O3-delta perovskite and monoclinic SrAl2O4-based phases, occurs via different mechanisms in comparison to the dry methane interaction with the lattice oxygen. The catalytic behavior of powdered (SrFe)0.7(SrAl2)0.3Oz, studied by temperature-programmed reduction in dry CH4 at 523-1073 K, is governed by the level of oxygen nonstoichiometry in the crystal lattice of the perovskite component and is qualitatively similar to that of other perovskite-related ferrites, such as Sr0.7La0.3Fe0.8Al0.2O3-delta. While extensive oxygen release from the ferrite lattice at 700-900 K leads to predominant total oxidation of methane, significant selectivity to synthesis gas formation, with H2/CO ratios close to 2, is observed above 1000 K, when a critical value of oxygen deficiency is achieved. The steady-state oxidation over dense membranes at 1123-1223 K results, however, in prevailing total combustion, particularly due to excessive oxygen chemical potential at the membrane surface. In combination with surface-limited oxygen permeability, mass transport limitations in a porous layer at the membrane permeate side prevent reduction and enable stable operation of (SrFe)0.7(SrAl2)0.3Oz membranes under air/methane gradient. Taking into account the catalytic activity of SrFeO3-delta-based phases for the partial oxidation of methane to synthesis gas and the important role of mass transport-related effects, one promising approach for membrane development is the fabrication of thick layer of porous ferrite-based catalyst at the surface of dense (SrFe)0.7(SrAl2)0.3Oz composite.  相似文献   

10.
Na-W-Mn/SiO2催化剂活化甲烷的研究Ⅱ.活性氧物种   总被引:8,自引:3,他引:5  
季生福  李树本 《分子催化》2000,14(2):107-110
制备了不同Na、W、Mn组分的Na-W-Mn/SiO2催化剂,并进行了O2程序升温脱附(O2-TPD)和不同温度下Na-W-Mn/SiO2催化剂的CH4脉冲反应(CH4-PR)。研究结果表明,Na-W-Mn/SiO2催化剂活化甲烷的活笥氧物种是W和Mn提供的、高温下易于流动的表面晶格氧(O^2-)。Na和O^2-的活泼性具有重要的促进作用,它可以极化W、Mn的金属一氧键,促进O^2-的流动性。Na  相似文献   

11.
CO oxidation and decomposition behaviors over nanosized 3% Au/alpha-Fe2O3 catalyst and over the alpha-Fe2O3 support were studied in situ via thermogravimetry coupled to on-line FTIR spectroscopy (TG-FTIR), which was used to obtain temperature-programmed reduction (TPR) curves and evolved gas analysis. The catalyst was prepared by a sonication-assisted Au colloid based method and had a Au particle size in the range of 2-5 nm. Carburization studies of H 2-prereduced samples were also made in CO gas. According to gravimetry, for the 3% Au/alpha-Fe2O3 catalyst, there were three distinct stages of CO interaction with the Au catalyst but only two stages for the catalyst support. At low temperatures (相似文献   

12.
Solid-state (1)H, (17)O MAS NMR, (1)H-(93)Nb TRAPDOR NMR, and (1)H double quantum 2D MAS NMR experiments were used to characterize the oxygen, water, and hydroxyl environments in the monoprotonated hexaniobate material, Na(7)[HNb(6)O(19)].15H(2)O. These solid-state NMR experiments demonstrate that the proton is located on the bridging oxygen of the [Nb(6)O(19)](8-) cluster. The solid-state NMR results also show that the NbOH protons are spatially isolated from similar protons, but undergo proton exchange with the water species located in the crystal lattice. On the basis of double quantum (1)H MAS NMR measurements, it was determined that the water species in the crystal lattice have restricted motional dynamics. Two-dimensional (1)H-(17)O MAS NMR correlation experiments show that these restricted waters are preferentially associated with the bridging oxygen. Solution (17)O NMR experiments show that the hydroxyl proton is also attached to the bridging oxygen for the compound in solution. In addition, solution (17)O NMR kinetic studies for the hexaniobate allowed the measurement of relative oxygen exchange rates between the bridging, terminal, and hydroxyl oxygen and the oxygen of the solvent as a function of pH and temperature. These NMR experiments are some of the first investigations into the proton location, oxygen and proton exchange processes, and water dynamics for a base stable polyoxoniobate material, and they provide insight into the chemistry and reactivity of these materials.  相似文献   

13.
We present a detailed dynamical study of the kinetics of O(3P)+NO(2Pi) collisions including O atom exchange reactions and the recombination of NO2. The classical trajectory calculations are performed on the lowest 2A' and 2A" potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, kex, is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2kex, overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, kr, is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, kr proportional, T-1.5, of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, DeltaZPE, into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO2, which is in accord with the overall T-1.4 dependence of the measured recombination rate even in the low temperature range.  相似文献   

14.
The oxygen surface exchange kinetics of mixed conducting perovskite oxides SrTi(1-x)Fe(x)O(3-δ) (x = 0, 0.01, 0.05, 0.35, 0.5) has been investigated as a function of temperature and oxygen partial pressure using the pulse-response (18)O-(16)O isotope exchange (PIE) technique. Arrhenius activation energies range from 140 kJ mol(-1) for x = 0 to 86 kJ mol(-1) for x = 0.5. Extrapolating the temperature dependence to the intermediate temperature range, 500-600 °C, indicates that the rate of oxygen exchange, in air, increases with increasing iron mole fraction, but saturates at the highest iron mole fraction for the given series. The observed behavior is concomitant with corresponding increases in both electronic and ionic conductivity with increasing x in SrTi(1-x)Fe(x)O(3-δ). Including literature data of related perovskite-type oxides Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ), La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ), La(0.6)Sr(0.4)CoO(3-δ), and Sm(0.5)Sr(0.5)CoO(3-δ), a linear relationship is observed in the log-log plot between oxygen exchange rate and oxide ionic conductivity with a slope fairly close to unity, suggesting that it is the magnitude of the oxide ionic conductivity that governs the rate of oxygen exchange in these solids. The distribution of oxygen isotopomers ((16)O(2), (16)O(18)O, (18)O(2)) in the effluent pulse can be interpreted on the basis of a two-step exchange mechanism for the isotopic exchange reaction. Accordingly, the observed power law dependence of the overall surface exchange rate on oxygen partial pressure turns out to be an apparent one, depending on the relative rates of both steps involved in the adopted two-step scheme. Supplementary research is, however, required to elucidate which of the two possible reaction schemes better reflects the actual kinetics of oxygen surface exchange on SrTi(1-x)Fe(x)O(3-δ).  相似文献   

15.
IntroductionTheoxidativecouplingofmethane(OCM)toetheneandethaneisanattractivereactiontoconvertnaturalgasintovaluablechemicals.SincethepioneeringworkbyKellerandBhasin[1],OCMhasbecomeasubjectofworldwideintenseresearchinrecentyears.Almostallofelementsinthepe…  相似文献   

16.
Abstract  This article focuses on perovskite materials for application as cathode material in solid oxide fuel cells. In order to develop new promising materials it is helpful to classify already known perovskite materials according to their properties and to identify certain tendencies. Thereby, composition-dependent structural data and materials properties are considered. Structural data under consideration are the Goldschmidt tolerance factor, which describes the stability of perovskites with respect to other structures, and the critical radius and lattice free volume, which are used as geometrical measures of ionic conductivity. These calculations are based on the ionic radii of the constituent ions and their applicability is discussed. A potential map of perovskites as a tool to classify simple ABO3 perovskite materials according to their electrical conduction behavior is critically reviewed as a structured approach to the search for new cathode materials based on more complex perovskites with A and/or B-site substitutions. This article also covers the approaches used to influence electronic and the ionic conductivity. The advantage of mixed ionic electronic conductors in terms of the oxygen exchange reaction is addressed and their important properties, namely the oxygen-exchange coefficient and the oxygen diffusion coefficient, and their effect on the oxygen reduction reaction are presented. Graphical abstract     相似文献   

17.
Temperature-programmed desorption mass spectrometry (TPD-MS) measurements on [(18)O]water-enriched copper sulfate pentahydrate (CuSO(4).5H(2)(18)O) reveal an unambiguous occurrence of efficient oxygen isotope exchange between the water of crystallization and the sulfate in its CuSO(4) solid phase. To the best of our knowledge, the occurrence of such an exchange was never observed in a solid phase. The exchange process was observed during the stepwise dehydration (50-300 degrees C) of the compound. Specifically, the exchange promptly occurs somewhere between 160 and 250 degrees C; however, the exact temperature could not be resolved conclusively. It is shown that only the fifth, sulfate-associated, anionic H(2)O molecule participates in the exchange process and that the exchange seems to occur in a preferable fashion with, at the most, one oxygen atom in SO(4). Such an exchange, occurring below 250 degrees C, questions the common conviction of unfeasible oxygen exchange under geothermic conditions. This new oxygen exchange phenomenon is not exclusive to copper sulfate but is unambiguously observed also in other sulfate- and nitrate-containing minerals.  相似文献   

18.
Atmospheric nitrate shows a large oxygen isotope anomaly (Delta 17 O), characterized by an excess enrichment of 17 O over 18 O, similar to the ozone molecule. Modeling and observations assign this specific isotopic composition mainly to the photochemical steady state that exists in the atmosphere between ozone and nitrate precursors, namely, the nitrogen oxides (NOx=NO+NO2). However, this transfer is poorly quantified and is built on unverified assumptions about which oxygen atoms of ozone are transferred to NO(x), greatly weakening any interpretation of the nitrate oxygen isotopic composition in terms of chemical reaction pathways and the oxidation state of the atmosphere. With the aim to improve our understanding and quantify how nitrate inherits this unusual isotopic composition, we have carried out a triple isotope study of the reaction NO+O3. Using ozone intramolecular isotope distributions available in the literature, we have found that the central atom of the ozone is abstracted by NO with a probability of (8+/-5)%(+/-2 sigma) at room temperature. This result is at least qualitatively supported by dynamical reaction experiments, the non-Arrhenius behavior of the kinetic rate of this reaction, and the kinetic isotope fractionation factor. Finally, we have established the transfer function of the isotope anomaly of O3 to NO2, which is described by the linear relationship Delta 17 O(NO2)=A x Delta 17 O(O3)+B, with A=1.18+/-0.07(+/-1 sigma) and B=(6.6+/-1.5)[per thousand](+/-1 sigma). Such a relationship can be easily incorporated into models dealing with the propagation of the ozone isotope anomaly among oxygen-bearing species in the atmosphere and should help to better interpret the oxygen isotope anomaly of atmospheric nitrate in terms of its formation reaction pathways.  相似文献   

19.
A W/O microemulsion of Tween‐80‐Span‐80/n‐butylalcohol/ethyl‐oleate/H2O to envelop insulin (INS) was prepared. In order to obtain the maximum solved water, the components of microemulsion to envelop INS were chosen with the pseudo‐ternary phase diagram and the influences of temperature, salinity as well as the pH on microemulsion areas also were investigated. To test the properties of the microemulsion, the conductance was used to divide O/W, W/O and BC regions, the dynamic light scattering to evaluate the particle diameters of microemulsion, the 125I isotope tracing method to measure the release rate of INS loaded in W/O microemulsion, and the growth inhibitory effect test to appraise the cytotoxicity on human normal cells. Results show that W/O microemulsion forms when water content below 50% in the microemulsion system. The microemulsion region decreases slightly with the increase of temperature, salinity and the decrease of pH. However, the viscosity measurements along certainly selected dilution lines to the microemulsion indicate that no phase invert occurred. Diameter of microemulsion particle increases with the addition of INS, and the increase is sharp in the first 5 days then very slightly at 68.6 nm within a month. The INS loaded W/O microemulsion possesses eminent sustaining release efficiency and the cytostatic as well as cytotoxic assays illustrate that the microemulsion can be used as drug delivery at small dosage.  相似文献   

20.
A series of layered oxides of nominal composition SrFe(1-x)Mn(x)O(2) (x = 0, 0.1, 0.2, 0.3) have been prepared by the reduction of three-dimensional perovskites SrFe(1-x)Mn(x)O(3-δ) with CaH(2) under mild temperature conditions of 583 K for 2 days. The samples with x = 0, 0.1, and 0.2 exhibit an infinite-layer crystal structure where all of the apical O atoms have been selectively removed upon reduction. A selected sample (x = 0.2) has been studied by neutron powder diffraction (NPD) and X-ray absorption spectroscopy. Both techniques indicate that Fe and Mn adopt a divalent oxidation state, although Fe(2+) ions are under tensile stress whereas Mn(2+) ions undergo compressive stress in the structure. The unit-cell parameters progressively evolve from a = 3.9932(4) ? and c = 3.4790(4) ? for x = 0 to a = 4.00861(15) ? and c = 3.46769(16) ? for x = 0.2; the cell volume presents an expansion across the series from V = 55.47(1) to 55.722(4) ?(3) for x = 0 and 0.2, respectively, because of the larger effective ionic radius of Mn(2+) versus Fe(2+) in four-fold coordination. Attempts to prepare Mn-rich compositions beyond x = 0.2 were unsuccessful. For SrFe(0.8)Mn(0.2)O(2), the magnetic properties indicate a strong magnetic coupling between Fe(2+) and Mn(2+) magnetic moments, with an antiferromagnetic temperature T(N) above room temperature, between 453 and 523 K, according to temperature-dependent NPD data. The NPD data include Bragg reflections of magnetic origin, accounted for with a propagation vector k = ((1)/(2), (1)/(2), (1)/(2)). A G-type antiferromagnetic structure was modeled with magnetic moments at the Fe/Mn position. The refined ordered magnetic moment at this position is 1.71(3) μ(B)/f.u. at 295 K. This is an extraordinary example where Mn(2+) and Fe(2+) ions are stabilized in a square-planar oxygen coordination within an infinite-layer structure. The layered SrFe(1-x)Mn(x)O(2) oxides are kinetically stable at room temperature, but in air at ~170 °C, they reoxidize and form the perovskites SrFe(1-x)Mn(x)O(3-δ). A cubic phase is obtained upon reoxidation of the layered compound, whereas the starting precursor SrFeO(2.875) (Sr(8)Fe(8)O(23)) was a tetragonal superstructure of perovskite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号