首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A series of novel heteronuclear Ln(III)-CU(II) complexes with noncyclic polyether-amino acid Schiff base were synthesized. The general formula is (LnCu2(H2TALY) (NO3)5] (NO3)2·nH2O (Ln= La, Nd, Sm, Gd,n = 4; Ln = Yb, Y,n = 3), where H2TALY = tetraglycol aldehyde bis-lysine Schiff base. It is the first time to report the synthetic method for this new Cu(II) complexes and Ln(III)-Cu(II) heteronuclear complexes. The complexes were characterized by elemental analysis, IR spectra. TG-DTA, magnetic susceptibility, and especially by a 500 MHz NMR spectrometer for 2D-COSY NMR. Coordination mechanism and structures of complexes have been suggested as well. Of particular interest is the potential that the novel complexes obtained may be used as a catalyst. which prompted us to investigate them. It shows 100% conversion with the viscosity-average molecular weight 120 000 for the polymerization of methyl methacrylate (MMA) without addition of any cocatalyst. Furthermore, the complexes with such aliphatic Schiff bases can be used as a good catalyst, which has been confirmed and discussed here. They may be a new kind of catalyst system with the above speciality. Project supported by the National Natural Science Foundation of China (Grant No. 29671026) and Natural Science Foundation of Zhejiang Province (Grant No. 296062) and the Laboratory of MRAMP (Grant No. 971502).  相似文献   

2.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:16,17-tribenzo-9,12,15-trioxacyclooktadeca-1,5-dien (L) was synthesized by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane. Then, its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes were synthesized by template effect by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements, mass spectra and cyclic voltammetry. All complexes are diamagnetic and Cu(II) complex is binuclear. The Co(II) was oxidized to Co(III). The comparative electrochemical studies show that the nickel complex exhibited a quasi-reversible one-electron reduction process while copper and cobalt complexes gave irreversible reduction processes in DMSO solution.  相似文献   

3.
1,6-Bis(2-formylphenyl) hexane (I) was derived from 1,6-dibromohexane with salicylaldehyde and K2CO3 and the ligand (L) was derived from compound I and 2,6-diaminopyridine. Then, the Cu(II), Ni(II), Pb(II), Zn(II), Cd(II), and La(III) complexes with L were synthesized by the reaction of this ligand and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Zn(NO3)2 · 6H2O, Cd(NO3)2 · 6H2O, and La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H and 13C NMR, UV-Vis spectra, magnetic susceptibility, conductivity measurements, and mass spectra. All complexes are diamagnetic and the Cu(II) complex is binuclear. The article is published in the original.  相似文献   

4.
1H and 13C NMR and 1H NMR relaxation spectroscopy (RS)measurements are reported for the CDCl3 and CD2Cl2 solutions of [La(NO3)3(diaza-18-crown-6)] ({bf I}), [Pr(NO3)3(diaza-18-crown-6)] ({bf II}) and [Nd(NO3)3(diaza-18-crown-6)] ({bf III}) complexes. Temperature dependencies of the 1H NMR spectra of II have been analyzed using the dynamic NMR methods for multi-site exchange. Enantiomeric isomer interconversion in II is characterized by H = 21.5 ± 4 kJ mol-1. Studies of the values of the lanthanide-induced shifts and the longitudinal relaxation rate enhancement revealed that the structure of complexes in solution is similar to that reported for the [La(NO3)3(18-crown-6)] complex in the crystal state. Nevertheless, it appears that the principal values of the molar paramagnetic susceptibility tensor (i) significantly differ in complexes II and III. The possible reasons for the different characteristics of these complexes are discussed.  相似文献   

5.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:19,20-tribenzo-9,12,15,18-tetraoxacyclounkosa-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and Cu(NO3)2· 3H2O, Ni(NO3)2· 6H2O, Pb(NO3)2, Co(NO3)2· 6H2O, La(NO3)3·6H2O respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, u.v–vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoIII complex was oxidized to CoIII.  相似文献   

6.
The La(III) and Th(IV) complexes have been synthesized by reacting La(III) and Th(IV) nitrate with the Schiff base derived from thiocarbohydrazide and thiophene-2-aldehyde. These complexes are soluble only to a larger extent in DMF and DMSO. The observed molar conductance values indicate that they are non-electrolytes. The elemental analyses of the complexes and confined to the stoichiometry of the type La.L.(NO3)3H2O and Th.L.(NO3)4. Further, the complexes have been characterized by the spectral and thermogravimetric data. The solid state d.c. electrical conductivity of the La(III) and Th(IV) complexes has been investigated from room temperature to 205 °C; which indicates the electrical conductivity increases with increase in temperature. Hence, La(III) and Th(IV) complexes were considered as semiconductors. Fluorescence spectra of the Schiff base and its Th(IV) complex were investigated in various solvents; the Schiff base and its metal complexes were evaluated for their antimicrobial activity.  相似文献   

7.
Nine novel heteronuclear complexes of Ln(III)-Cu(II) with salicylidene tetraethylene glycol diamine (SALTTA) have been synthesized and characterized. They have the general formulae [LnCu2(SALTTA)2(NO3)3](NO3)4·3H2O (Ln=La, Pr, Nd, Sm) and [LnCu3(SALTTA)3(NO3)5]-(NO3)4·4H2O (Ln=Gd, Tb, Er, Yb, Y). The IR spectra show that vC=N in the Ln(III)-Cu(II) heteronuclear complexes are splitted up into two peaks with a far distance. It has been confirmed that oxygen atoms in oxyethylene of the ligand are not all coordinated to the central metal ions by both IR and NMR methods.  相似文献   

8.
2-Hydroxybenzylidene-2-phenylquinoline-4-carbonylhydrazone (H2L) and five Ln(III) complexes, [Ln(H2L)(NO3)2]NO3 [Ln = La (1), Pr (2), Sm (3), Eu (4), and Tb (5)], have been synthesized and characterized by 1H NMR, elemental analysis, conductivity measurements, mass spectra, IR spectra, and UV spectra. The interaction of these complexes with calf thymus DNA was investigated by UV absorption spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy and viscosity measurements. Results suggest that these complexes bind to DNA via groove binding.  相似文献   

9.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:13,14-tribenzo-9,12-dioksa-cyclopentadeca-1,5-diene was synthesized by reaction of 2,6-diaminopyridine and 1,2-bis(2-carboxyaldehyde phenoxy)ethane. Then, its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes were synthesized by the template effect by the reaction of 2,6-diaminopyridine and 1,2-bis(2-carboxyaldehyde phenoxy)ethane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV-Vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements, mass spectra, and cyclic voltammetry. All complexes are diamagnetic and Cu(II) complex is binuclear. The Co(II) was oxidized to Co(III). The comparative electrochemical studies show that the nickel complex exhibited a quasi-reversible one-electron reduction process, while copper and cobalt complexes gave irreversible reduction processes in DMSO solution.  相似文献   

10.
Some new Schiff bases derivates from 2-furaldehyde and phenylenediamines (L1-3) and their complexes with lanthanum (La), samarium (Sm), gadolinium (Gd) and erbium (Er) have been synthesized. These complexes with general formula [Ln(L1-3)2(NO3)2]NO3·nH2O (Ln = La, Sm, Gd, Er) were characterized by elemental analysis, UV-Vis, FT-IR and fluorescence spectroscopy, molar conductivity and thermal analysis. The metallic ions were found to be eight coordinated. The emission spectra of these complexes indicate the typical luminescence characteristics of the Sm(III), La(III), Er(III) and Gd(III) ions.  相似文献   

11.
An 1H, 13C, and 15N NMR study has been completed for the complexes of La(III), Tm(III), and Yb(III) with nitrate and isothiocyanate in aqueous solvent mixtures. Signals for four complexes are observed for both the Tm3+–NO3 and Yb3+–NO3 solutions, with the species identified as the mono-, di-, tetra-, and either the penta - or hexanitrato. These results are consistent with those determined for the nitrate complexes of the Ce(III)–Eu(III) metal ions. The chemical shifts for the Tm(III) and Yb(III) nitrate complexes indicate a pseudocontact binding mechanism prevails. The complexes of diamagnetic La(III) with NO3 produce three signals in the 15NO3 spectra, with assignments paralleling those observed with the paramagnetic lanthanides. Three complexes are formed in the La3+–NCS solutions, with signals assigned to the mono-, di-, and triisothiocyanato species.  相似文献   

12.
Noncyclicpolyethershaveattractedmoreandmoreattentionfortheirnonexpensive,lesstoxicityandsoon.Theyhavesomepromisingapplicationsinsolventextractionandenrichmentofmetalionsaswellasintheionselectiveelectrode,etc.[1].NoncyclicpolyetherSchiffbaseisoneofpolyden…  相似文献   

13.
A series of La(III) and Th(IV) complexes have been synthesized by template condensation of 2,6-diformyl-4-methylphenol, bis-(4-amino-5-mercapto-1,2,4-triazol-3-yl)alkanes and La(NO3)3 ·?6H2O/Th(NO3)4 ·?5H2O in 2 : 2 : 1 molar ratio in ethanol. These complexes were characterized by elemental analyses, magnetic susceptibility, molar conductance, spectral (IR, UV–Vis, 1H-NMR, FAB-mass), thermal, fluorescence and solid state d.c. electrical conductivity studies. The complexes are insoluble in water but soluble in DMF and DMSO. The observed molar conductance values indicate non electrolytes. Elemental analyses suggest 1 : 1 stoichiometry, [La(LI–IV)(NO3)(H2O)2] ·?3H2O and [Th(LI–IV)(NO3)2(H2O)2] ·?3H2O. Spectroscopic studies indicate that coordination occurs through phenolic oxygen after deprotonation, nitrogen of azomethine group and bridging bidentate nitrates. The solid state d.c. electrical conductivity indicates semiconducting nature. All the Schiff bases and their La(III) and Th(IV) complexes were evaluated for biological properties; some compounds show promising results.  相似文献   

14.
Reactions of La(III), Pr(III), Nd(III) or Sm(III) nitrate with bifunctional tetradentateSchiff base, [o-HOC6H4C(CH3): :NCH2]2, having the donor system HO–N–N–OH in 12 molar ratio have been investigated and found to yield new derivatives of the type [Ln(SBH2)2](NO3)3 [whereLn=La(III), Pr(III), Nd(III) or Sm(III) andSBH2=Schiff base molecule, [o-HOC6H4C(CH3) : NCH2]2. On the basis of elemental analyses, conductivity and magnetic measurements and infrared spectra, plausible structures for the resulting complexes have been indicated.  相似文献   

15.
Two rare metal coordination complexes of yttrium(III) including 1,10‐phenanthroline, Y(phen)2(NO3)3 and (phenH)2[Y2(pydc)3(NO3)2·6H2O] (phen=1,10‐phenanthroline, pydc=2,6‐pyridinedicarboxylate), and a proton transfer compound (phenH+)2(pydc2?) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra (IR), nuclear magnetic resonance (NMR) and thermal analysis. The proposed structures of yttrium complexes were exhibited. The in vitro biological activities of the newly synthesized complexes have also been investigated against Bacillus coli, Staphylococcus aureus and Candida albicans. The results showed that yttrium(III) complexes including 1,10‐phenanthroline exhibited better antibacterial/antifungal activity than their ligands and corresponding compounds.  相似文献   

16.
Reaction of Ln(NO3)3 with 2,6-bis[(3-methoxysalicylidene)hydrazino carbonyl]pyridine (BMSPD) afforded binuclear complexes of the type [Ln2(BMSPD)(NO3)2(H2O)5]·3H2O in case of La(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III) and Dy(III), and [Ln2(BMSPD)(NO3)2(H2O)5] in case of Y(III). The mode of coordination of ligand and the conformational changes on complexation with lanthanides was studied based on elemental analysis, magnetic studies, TG/DTA, IR, 1H-NMR, Electronic, EPR and Fluorescence spectral studies. The ligand coordinates to one metal centre through enolized deprotonated carbonyls and pyridine nitrogen whereas doubly deprotonated phenolate oxygens and two hydrazonic nitrogens ligate to another lanthanide centre. Both the metal ions are in eight-coordination environments. The ligand and complexes were further tested for antifungal and antibacterial activities.  相似文献   

17.
A direct, low-temperature nuclear magnetic resonance spectroscopic study of europium(III)-nitrate contact ion-pairing has been completed, and preliminary results for europium(III)-isothiocyanate have been obtained. In water-acetone-Freon mixtures, at –110°C to –120°C, four15N NMR signals are observed for coordinated nitrate ion. Area evaluations of the signals and their concentration dependence indicate the formation of Eu(NO3)2+, Eu(NO3) 2 1+ , and two higher complexes, possibly the tetra-, with either the penta-or hexanitrato. This correlates well with similar15N NMR results obtained for Ce(III), Pr(III), Nd(III), and Sm(III). As a result of a higher dielectric constant, complex formation is significantly less in water-methanol mixtures, wheein only three complexes form with Eu(NO3) 2 1+ dominating at the highest anion concentrations. Competitive complexing experiments in water-methanol also were made by35Cl NMR chemical shift and linewidth measurements, as well as15N NMR. Initial experiments with the Eu3+-NCS system show four coordinated anion signals, displaced from the bulk anion peak by about –250 ppm and –2,500 ppm in the13C and15N NMR spectra, respectively. Area evaluations are consistent with the presence of Eu(NCS)2+ through Eu(NCS) 4 1- in these solutions. A consideration of the chemical shifts identified the nitrogen atom as the site of binding in the NCS. A discussion of these preliminary results, as well as those for several other metal-ions, will be presented.  相似文献   

18.
The extent of inner-shell, contact ion-pairing between samarium(III)-nitrate and in a preliminary manner, samarium(III)-isothiocyanate, has been determined by a direct, low-temperature, multinuclear magnetic resonance technique. In water-acetone mixtures containing Freon-12 or Freon-22, the slow exchange condition is achieved at –110 to –120°C, permitting the observation of15N NMR resonance signals for bulk and coordinated nitrate. In these mixtures, signals are observed for Sm(NO3)2+, Sm(NO3) 2 + , and two higher complexes, possibly the tetranitrato with either the penta-or hexanitrato.1H NMR signals for bound water molecules in these mixtures were observed, but accurate hydration numbers can not yed be determined. In anhydrous or aqueous methanol mixtures,15N NMR signals for only three complexes are observed, with the dinitrato clearly dominating. Using15N and35Cl NMR chemical shift and linewidth measurements, the superior complexing ability of nitrate compared to perchlorate and chloride, was demonstrated. Successful preliminary13C and15N NMR measurements of Sm3+-NCS interactions in water-acetone-Freon-22 mixtures also have been made. The13C NMR spectra reveal signals for five complexes, presumably Sm(NCS)2+ through Sm(NCS) 5 2– . In the15N NMR spectra, signals for only three complexes are observed (the result of insufficient spectral resolution.) displaced about +240 ppm from bulk anion.  相似文献   

19.
A study of the complex formation which occurs between cerium(III) and nitrate ions in aqueous solvent mixtures has been carried out by a direct, low-temperature, nitrogen-15 (15N) NMR technique. At temperatures in the range of –95 to –110°C, ligand exchange is slow enough to permit the observation of separate15N NMR signals for bulk nitrate, and this anion in the cerium(III) principal coordination shell. In water-acetone-Freon-12 mixtures, the spectra reveal the nitrato complexes do not form consecutively. Rather, signals are observed for Ce(NO3)2+, Ce(NO3) 2 1+ , and only two other higher order complexes, even at very high NO 3 to Ce(III) mole ratios. Signal area evaluations were used to identify the possible higher order complexes. At comparable salt concentrations in aqueous-methanol mixtures, only Ce(NO3)2+ and Ce(NO3) 2 1+ are formed, reflecting a decreased tendency for complexation in media of higher dielectric constant.  相似文献   

20.
《Arabian Journal of Chemistry》2020,13(12):8650-8661
In order to investigate the effect of differences in amino acid alkyl chains, In order to investigate the effect of difference amino acid alkyl chains on the Rare earth complexes, the lipoaminic acids rare earth surfactant complexes of yttrium hexanoyl alaninc acid (Y(hex-ala)3), yttrium octanoyl alaninc (Y(oct-ala)3) and yttrium dodecanoyl alaninc acid (Y(dod-ala)3) are synthesized by the reaction of C9H17NO3, C11H21NO3, C15H29NO3 with YCl3, respectively. These complexes have been compared to the yttrium octanoate soap (Y(octnt)3). At the same time, the formation of molecular glasses of these complexes are compared with the aggregation behavior in solution, evaluate properties as glass. Furthermore, the aggregation behavior of the above surfactant complexes in the pure solvent are studied using nuclear magnetic resonance (NMR) spectrometry, vapor pressure osmometry (VPO), electrical conductivity and Fourier Transform-Infrared spectroscopy (FT-IR). As results, these Y(III) complexes aggregate in the organic solvents system and tend to form aggregates. After the organic solvents evaporated, organic rare earth vitreous bodies was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号