首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The effect of vertical vibrations on the convection in a rotating planar fluid layer heated from below was studied. In this case a modulation parameter, the acceleration due to gravity, appears in the problem. The modulation of the parameter may have a significant effect on the onset of convective instability. Parameter modulation in nonrotating layers has been investigated in earlier work [1–3]. The presence of rotation significantly increases the complexity of the mathematical problem, introducing an additional dependence of the solution on the Taylor number Ta and the Prandtl number Pr. Furthermore, an oscillatory convection regime can occur at the stability limit in rotating fluids with Pr < 1. Parameter modulation in the rotating fluid may not only lead to a change in the stability limit and critical wavelength but also to a change in the eigenfrequency of the oscillatory convection. Rauscher and Kelly [4] examined the effect of parameter modulation on the convective stability of a rotating fluid only for the particular case of a sinusoidal variation in the temperature gradient with a small amplitude for Pr = 1, i.e., the effect of modulation was studied on only a steady convection regime.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 12–22, July–August, 1984.  相似文献   

2.
The heat conduction of a porous medium saturated with a fluid is usually regarded as being purely molecular [1]. The assumption here is that in the case of heating from below the local temperature gradient within each of the pores, like the averaged gradient in the complete layer, is strictly vertical, and, since the pores are as a rule small, this local gradient is less than the critical. It is therefore assumed that in the absence of large-scale convection the fluid in the pores is in equilibrium. However, for different thermal conductivities of the fluid and the porous skeleton surrounding it a vertical temperature gradient in the fluid and, accordingly, equilibrium of the fluid are possible only if a cavity is a sphere or an ellipsoid with a definite orientation [1]. Since the pores do not have such shapes, the convective motion that arises in each of the pores or in several communicating pores can lead to an increase in the effective thermal conductivity of the fluid and, accordingly, the effective thermal conductivity of the complete medium. The present paper is devoted to study of this effect.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 93–98, January–February, 1984.  相似文献   

3.
The generation of large-scale structures during turbulent convection in a rotating layer of incompressible fluid heated by internal heat sources is considered. The results of a theoretical and experimental investigation of a physical mechanism of large-scale structure formation which operates under conditions of high-intensity small-scale turbulent convection and low boundary heat transfer are discussed. The theoretical investigation is based on a system of evolutionary equations obtained for the transverse space moments of the physical fields, which describes the motion in thin layers of rotating fluid. The stability of the solution of the mathematical model is studied using the small perturbation method. As a result, a condition of existence of longwave instability of the system and a criterion determining the threshold of its onset are obtained. The theoretical conclusions are confirmed by a series of experiments carried out on a laboratory model. The design of the laboratory apparatus and the experimental technique are described.Moscow, Perm'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 20–29, September–October, 1996.  相似文献   

4.
Thermocapillary convection in a plane horizontal fluid layer with concentrated heating of the free surface is modeled numerically using the Navier-Stokes equations and the heat transport equation. This makes it possible to examine the structure of the convection throughout the fluid volume, in particular in the region where the motion is weak. The deformation of the free surface is assumed to be negligibly small. In the case of a ponderable fluid this assumption is justified given certain upper and lower constraints on the temperature difference and the thickness of the layer, respectively, [9, 10]. Under conditions of weightlessness a fluid layer of constant thickness in a rectangular channel can be realized at a contact angle of 90° [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 108–113, July–August, 1987.  相似文献   

5.
In the absence of body forces, a factor which has a strong influence on the equilibrium stability of a nonuniformly heated liquid is the dependence of the coefficient of surface tension on the temperature and the thermocapillary effect generated by it. If the equilibrium temperature gradient is sufficiently great, then the presence of the thermocapillary forces on the free surface can lead to the occurrence of convective motion. The monotonie instability of the equilibrium of a flat layer was investigated in [1–3]. Analysis of nonmonotonic disturbances [4] showed that in the case of an undeformable free surface there is no oscillatory instability. In [5] it was found that oscillatory instability is possible if there is a nonlinear dependence of the coefficient of surface tension on the temperature. The present paper is devoted to numerical investigation of the equilibrium stability of a flat layer with respect to arbitrary disturbances. It is shown that for a deformable free boundary there appears an additional neutral curve, which corresponds to monotonie capillary instability. In addition, when the capillary convection mechanism is taken into account, there appears an oscillatory instability, which becomes the most dangerous in the region of small Prandtl and wave numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 27–31, March–April, 1991.I thank V. K. Andreev for a helpful discussion of the work.  相似文献   

6.
Large-eddy simulation (LES) on a spatially developing natural convection boundary layer along a vertical heated plate was conducted. The heat transfer rate, friction velocity, mean velocity and temperature, and second-order turbulent properties both in the wall-normal and the stream-wise direction showed reasonable agreement with the findings of past experiments. The spectrum of velocity and temperature fluctuation showed a -2/3-power decay slope and -2-power decay slope respectively. Quadrant analysis revealed the inclination on Q1 and Q3 in the Reynolds stress and turbulent heat flux, changing their contribution along the distance from the plate surface. Following the convention, we defined the threshold region where the stream-wise mean velocity takes local maximum, the inner layer which is closer to the plate than the threshold region, the outer layer which is farther to the plate than the threshold region. The space correlation of stream-wise velocity tilted the head toward the wall in the propagating direction in the outer layer; on the other hand, the correlated motion had little inclination in the threshold region. The time history of the second invariant of gradient tensor Q revealed that the vortex strength oscillates both in the inner and the outer layers in between the laminar and the transition region. In the turbulent region, the vortex was often dominant in the outer layer. Instantaneous three-dimensional visualization of Q revealed the existence of high-speed fluid parcels associated with arch-shape vortices. These results were considered as an intrinsic structure in the outer layer, which is symmetrical to the structure of canonical smooth/rough wall bounded layer flow in forced convection.  相似文献   

7.
In a two-layer system loss of stability may be monotonic or oscillatory in character. Increasing oscillatory perturbations have been detected in the case of both Rayleigh [1, 2] and thermocapillary convection [3–5]; however, for many systems the minimum of the neutral curve corresponds to monotonic perturbations. In [5] an example was given of a system for which oscillatory instability is most dangerous when the thermogravitational and thermocapillary instability mechanisms are simultaneously operative. In this paper the occurrence of convection in a two-layer system due to the combined action of the Rayleigh (volume) and thermocapillary (surface) instability mechanisms is systematically investigated. It is shown that when the Rayleigh mechanism operates primarily in the upper layer of fluid, in the presence of a thermocapillary effect oscillatory instability may be the more dangerous. If thermogravitational convection is excited in the lower layer of fluid, the instability will be monotonic.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 166–170, January–February, 1987.  相似文献   

8.
The article considers stationary thermocapillary convection in a thin horizontal layer of fluid with Prandtl number Pr < 1 when it is being locally heated from above in conditions in which the curvature of the free surface is small. It is shown that the motion has a cellular structure. The size of the convective cell is determined from the solution to the spectral problem to which the integration of the free convection system of equations reduces. If the Maragoni (Péclet) number is sufficiently high, the length of the convective cell turns out to be large in comparison with the thickness of the layer. The convection picture is considered and an expression obtained for the velocity of the developing flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 146–152, November–December, 1984.  相似文献   

9.
The thermal fluid convection in a coaxial horizontal gap uniformly rotating about its axis is investigated. The threshold above which convective flows are excited and the structure of these flows are studied. It is found that convection ensues irrespective of whether the inner or outer boundary temperature is higher. Convection manifests itself in the threshold development of rolls elongated in the direction of the rotation axis and is determined by two different mechanisms. If the layer is heated from outside, the centrifugal convection mechanism plays a leading part and the diameter of the convective rolls is comparable with the layer thickness. If the higher is the temperature of the inner boundary of the layer, the centrifugal inertia force has a stabilizing effect and convection development is related with the action of thermal vibrational mechanism. The latter is determined by gravity-generated oscillations of the nonisothermal fluid relative to the cavity. The wave number of the vibrational convective structures is several times smaller than under centrifugal convection. The results obtained broaden our understanding of thermal convection in systems rotating in external static force fields.  相似文献   

10.
The motion of spherical particles in a nonstationary layered flow are considered. It is assumed that the fluid is incompressible and that the particles do not interact with one another or influence the parameters of the fluid. Allowance is made for the influence of the pressure gradient, the apparent mass, the Magnus force, and the viscosity of the fluid on the motion of the particles. The formulation of the problem corresponds to the conditions of motion of the two-phase mixture in the channels of the rotatory-pulsatory apparatus [1] used in technology to realize various processes such as solution, emulsification, dispersing, etc. The processes in such an apparatus are strongly nonsteady and have hitherto been hardly investigated at all.Translated from 'Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 53–58, July–August, 1981.We thank A. R. Gurvich for making the calculations.  相似文献   

11.
Thermal convection of a fluid in a horizontal cylinder rotating about its own axis with uniformly volume-distributed internal heat sources is experimentally investigated. The enclosure boundary temperature was kept constant. The threshold of the excitation of convective flows and their structure are studied as functions of the heat-release intensity and the rotation velocity. The experiments are performed with water and water-glycerin solutions. It is shown that rapidly rotating fluid is in a stable quasiequilibrium state, namely, the temperature distribution is axisymmetric and has a maximum at the center of the enclosure. It is found that with decrease in the rotation velocity a convective flow arises thresholdwise, in the form of vortex cells periodically arranged along the axis. The thermal convection in the rotating enclosure is shown to be determined by the effects of two different mechanisms. One of these is due to the centrifugal force of inertia and plays the stabilizing role, while the other, thermovibrational mechanism is connected with nonisothermal fluid oscillations under the action of gravity in the enclosure-fitted reference frame and is responsible for the occurrence of mean thermal convection. The boundaries of the convection generation are plotted in the plane of the governing dimensionless parameters and the heat transfer in the supercritical region is studied.  相似文献   

12.
The equilibrium of a fluid is possible in a closed cavity in the presence of a strictly vertical temperature gradient (heating from below) [1]. There is a distinct sequence of critical Rayleigh numbers Ri at which this equilibrium loses its stability relative to low characteristic perturbations. The presence of different finite perturbations, unavoidable in an experiment, leads to the absence of a strict equilibrium when R < R1. The problem of the influence of the perturbation on the convection conditions near the critical points arises in this context [2, 3]. The case in which the cavity is heated not strictly from below is investigated in [2] and the case in which the perturbation of the equilibrium is due to the slow movement of the upper boundary of the region is investigated in [3]. In [2, 3] the perturbation has the structure of a first critical motion and thus the results of these papers coincide qualitatively. The perturbation of the temperature in the horizontal sections of the boundary, which creates a perturbation with a two-vortex structure corresponding to the second critical point R2, is examined in this paper. A similar type of perturbation is characteristic for experiments in which the thermal conductivity properties of the fluid and the cavity walls are different. The nonlinear convection conditions are investigated numerically by the net-point method.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 203–207, March–April, 1977.The author wishes to thank D. B. Lyubimova, V. I. Chernatynskii, and A. A, Nepomnyashchii for their helpful comments.  相似文献   

13.
The velocity and heat transfer fields near a vertical permeable surface with simultaneous convection are investigated. A solution is found for the boundary layer equations with known laws of surface temperature and flow velocity change. The transformed boundary layer equations contain the parameter G/R2, which determines the effect of free convection on friction and heat transfer for constrained motion. Calculations of friction and heat transfer as functions of draft (suction) with simultaneous convection are presented.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 96–100, March–April, 1973.  相似文献   

14.
The mechanisms of generation and scattering of sound by a vortex ring are investigated on the basis of fluid dynamics. The vortex ring can serve as a simple dynamic model of the large-scale structures observed in shear flows. Moreover, it is probably the most easily studied vortex element that can be created experimentally. The sound scattering investigation also served to determine the extent to which the vortex is affected by sound, its selectivity with respect to such parameters as the acoustic frequency, the angle of incidence of the wave, etc. The perturbed motion is considered against the background of the steady-state motion of the ring. The perturbed motion in the vortex core is determined on the basis of linear incompressible fluid dynamics. Two terms of the expansion in the M number of the far acoustic field generated by the perturbations in the core are found in accordance with Lighthill's theory. The acoustic power and directivity of the radiation and the acoustic instability growth rate are calculated. It is shown that the scattering of sound by the vortex ring is a resonance effect, and the scattering amplitude near resonance is determined. The acoustic action on the hydrodynamic structure of the flow in the core of the ring is especially intense near the resonances and extends over a period short as compared with the characteristic time of the acoustic instability.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 83–95, May–June, 1987.  相似文献   

15.
Salvatore Rionero 《Meccanica》2014,49(9):2061-2068
A multicomponent fluid mixture saturating a porous rotating horizontal layer, heated from below and salted partly from below and partly from above, in the Darcy–Boussinesq scheme, is investigated. Conditions guaranteeing the “cold convection” i.e. the instability of the thermal conduction solution irrespective of the temperature gradient, are furnished.  相似文献   

16.
The problem of the convection and convective instability of a fluid in a high-frequency vibration field under conditions of weightlessness was formulated in an earlier paper of the authors [1]. In the present paper, the conditions of equilibrium are discussed and the boundaries of vibration instability are determined for some equilibrium states: a plane layer of fluid with transverse temperature gradient and arbitrary direction of the vibration, a cylindrical layer with radial gradient and longitudinal direction of the vibration, and an infinite circular cylinder with transverse and mutually perpendicular directions of the temperature gradient and the vibration axis.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 12–19, July–August, 1981.We thank G. I. Petrov for helpful discussions.  相似文献   

17.
The results of investigating the convective instability of a horizontal layer of rotating fluid, created by a temperature difference applied at the boundaries of the layer and by heat sources distributed according to various laws, are presented. It is shown that, when the other parameters of the problem are fixed, an increase in the internal heat release lowers the limits of both monotonic and oscillatory stability of the layer, increases the wave number and reduces the neutral oscillation frequency. An increase in source concentration towards the center of the layer intensifies the effect. As the strength of the internal heat sources and their concentration towards the center of the layer increase, the oscillating convection that develops at the stability limit when the Prandtl number is low and the rotation fairly fast is first replaced by monotonic convection and then ceases altogether.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–28, January–February, 1989.  相似文献   

18.
The development of large-scale perturbations in a heated layer of rotating fluid is studied within the framework of the nonequilibrium turbulence model with asymmetric Reynolds stress tensor. It is shown that, as in spiral turbulence, when there is no equilibrium on one of the boundaries of the layer large-scale structures develop. Conditions under which both perfect intrinsic matching of turbulence and convection and internal resonance development exist are determined. It is shown that the manifestation in a turbulent medium of properties of the convective vector field such as spirality may be caused by constraints imposed by the angular momentum conservation law.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 47–55, January–February, 1996.  相似文献   

19.
Convective flows in a plane layer of viscous fluid in the presence of an oscillating external force are investigated numerically [1 – 8]. The layer is assumed to be placed in a gravitational field. The cases in which the external field oscillations are generated by rotation about the horizontal axis or by vibration in the longitudinal direction are considered. The Navier-Stokes equations and the Boussinesq approximation are used for describing the fluid motion. The flows developing in the layer in the presence of a transverse temperature gradient are determined, the stability boundaries of these flows are found, and the supercritical motion regimes are studied. These investigations are carried out using the averaging method (in order to find the stability limits for high rotation velocities and vibration frequencies) and the Galerkin method.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 99–106, September–October, 1994.  相似文献   

20.
Some results are given of an experimental investigation into the free convection in solutions with density which is nonuniform with height. It is shown that convective motion in solutions with a vertical density gradient and lateral heating is cellular in nature. The height of the cells is determined as a function of the temperature head and the density gradient.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 123–126, January–February, 1971.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号