首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
利用密度泛函理论,得到了ZrnB(n=1-13)团簇的基态结构,计算并讨论了团簇能量的二阶差分和离解能.结果表明,n=2,5,12时,相应团簇较稳定,特别是Zr5B团簇的稳定性最高.同时分析了ZrnB团簇的电子性质及磁性,结果显示能隙随n值的增大出现奇偶振荡趋势,特别是ZrM12B团簇的能隙只有0.015 eV,表明该团簇已具有金属性.电倚转移随n值增大,整体呈增大趋势,除了二聚体ZrB,电荷由B原子转移到Zr原子.利用Mulliken布居分析得到二聚体ZrB(5.000 μB)和团簇Zr4B(3.000 μB)的磁矩较大,ZrnB团簇中总磁矩主要来自Zr原子的4d轨道.  相似文献   

2.
利用密度泛函理论在广义梯度近似下研究了GenEu(n=1-13)团簇的生长模式和磁性.结果表明:对于GenEu(n=1-13)团簇的基态结构而言,没有Eu原子陷入笼中.这和SinEu以及其它过渡金属掺杂半导体团簇的生长模式不同.除GeEu团簇外,GenEu(n=2-13)团簇的磁矩均为7μB.团簇的总磁矩与Eu原子的4f轨道磁矩基本相等.Ge、Eu原子间的电荷转移以及Eu原子的5d、6p和6s间的轨道杂化可以增强Eu原子的局域磁矩,却不能增强团簇总磁矩.  相似文献   

3.
采用密度泛函理论(DFT)的B3LYP方法,在SDD基组水平上对PbmTen(m+n≤6)团簇的几何结构、平均原子键能、离解能及HOMO-LUMO能隙进行了计算分析.结果表明:纯Pb团簇比纯Te团簇稳定,PbnTe比PbTen(n=2-5)稳定,PbnTe2比Pb2Ten(n=3-4)更加稳定;混合团簇PbmTen的HOMO-LUMO能隙在1.87-3.55eV之间,表明该团簇具有半导体性质;在所有团簇中,PbTe团簇最稳定.  相似文献   

4.
基于密度泛函理论(DFT)的B3LYP方法,研究了TinO2和TinO2-(n=1-10)团簇的几何结构、电子结构以及磁性.结果表明,两个氧以分离的原子状态吸附在金属团簇的表面,呈现出以一个钛原子为中心的O-Ti-O的相邻吸附形式.中性团簇和阴离子团簇的能量最低结构相似.稳定性分析表明TinO2具有很高的稳定性,特别是TiO2和Ti7O2.此外,详细讨论了团簇的电离势、电子亲和能、电子解离能和能隙.基于最低能量结构,讨论了团簇的磁性,发现电荷从Ti原子向O原子转移,并且电荷转移主要发生在TinO2的Ti-3d、Ti-4s和O-2p轨道.磁性团簇中反铁磁序占据主导,磁矩主要来源Ti-3d电子的贡献,而两个氧原子的贡献非常小.  相似文献   

5.
采用密度泛函理论(Demity Function Theory)中的B3LYP方法,在Lanl2dz赝势基组水平上对(PtnMn)±,0(n=1~5)团簇的几何构型进行了全优化,并对基态的能级以及磁性进行了研究.结果表明:PtMn掺杂团簇的自旋多重度比较高,这种性质跟纯Mn团簇相似.并且发现一般情况下Mn原子参与成键数越多,结构越稳定,在成键数相同的情况下,成键的平均键长越短越稳定;其次(PtnMn)±,0团簇的所有稳定结构都表现为铁磁性耦合;掺杂一个Mn原子后的团簇磁性大大增强,磁矩主要来源于未满的d壳层电子,且Mn原子上的局域磁矩远大于Pt原子.随着Pt原子个数的增加,Mn原子的局域磁矩变化不大,但团簇的总磁矩渐渐增大.  相似文献   

6.
采用Saunders全局优化随机踢球模型与密度泛函理论相结合的方法,在B3LYP/SDD理论水平下研究了锡基原子团簇Sn_n(n=2~10)及锡基稀土原子钐掺杂团簇Sn_nSm(n=1~9)的几何结构、稳定性、电子性质和磁性.结果表明,团簇Sn_nSm(n=1~9)中掺杂的钐原子通常位于主团簇的表面,掺杂团簇的基态结构更倾向于具有较高对称性的三维结构;二元锡基混合团簇的平均结合能变大,稳定性增强,这主要归因于Sn—Sm键比Sn—Sn键的键能大,具有更强的相互作用;掺杂团簇具有较高的磁性,其总磁矩主要源自于钐原子4f电子的贡献;随着团簇尺寸的增加,二元团簇的总磁矩呈现出趋于饱和的现象.  相似文献   

7.
Pdn(n=1-7)团簇及其与甲烷相互作用的密度泛函理论研究   总被引:1,自引:0,他引:1  
姜勇  储伟  江成发  王耀红 《物理化学学报》2007,23(11):1723-1727
用密度泛函理论(DFT)的B3LYP方法, 对Pdn(n=1-7)团簇的几何结构、振动频率及其与甲烷分子间的相互作用进行了理论研究. 结果表明, 随着Pd原子数增多, 团簇结构对团簇大小的依赖性减弱, 结构参数向金属晶体趋近. 在Pdn(n=1-7)团簇上, 甲烷的表面吸附作用较弱. Pd2CH4中, 甲烷受到两个Pd原子的活化作用, 活化程度增强, 吸附能增大. 在PdnCH4 (n=1, 3-7)体系中, 甲烷的吸附能随着团簇模型的增大而减小, 趋近于其在金属晶面上的吸附能.  相似文献   

8.
在卡里普索(CALYPSO)结构预测的基础上,采用密度泛函理论(DFT)B3LYP方法,优化得到PdSi_n(n=1~15)团簇的基态结构,对其电子性质、红外光谱和拉曼光谱进行了讨论.结果表明,PdSi_n(n=1~15)团簇的基态构型随n值的增大由平面结构向立体结构演化;当n≤4时,PdSi_n团簇的红外与拉曼活性在450~500 cm-1范围内表现较好,当n≥5时,PdSi_n团簇的红外与拉曼活性在50~500 cm~(-1)范围内表现较好.  相似文献   

9.
采用密度泛函理论研究了InnAsn (n≤90)管状团簇以及单壁InAs纳米管的几何结构、稳定性和电子性质. 小团簇InnAsn (n=1-3)基态结构和电子性质的计算结果与已有报道相一致. 当n≥4时优化得到了一族稳定的管状团簇, 其结构基元(In原子与As原子交替排列的四元环和六元环结构)满足共同的衍化通式. 团簇的平均结合能表明横截面为八个原子的管状团簇稳定性最好. 管状团簇前线轨道随尺寸的变化规律有效地解释了一维稳定管状团簇的生长原因, 同时也说明了实验上之所以能合成InAs纳米管的微观机理. 此外, 研究结果表明通过管状团簇的有效组装可得到宽带隙的InAs半导体单壁纳米管.  相似文献   

10.
基于密度泛函理论(DFT)中的广义梯度近似(GGA)系统地研究了Snm On(m=1~3,n=1~2m)团簇的几何结构和电子性质.当m=n时,团簇的基态结构为Sn和O原子彼此相邻的环形结构,当nm时,团簇易于形成链状结构.研究发现:氧化锡团簇的物理和化学特性类似于氧化硅,主要表现为非金属性.对分裂途径、分裂能和能隙(HOMO-LUMO Gap)进行了研究,结果表明类氧化锡(Snm Om)、Sn2O3和Sn3O4团簇具有很好的稳定性,可以作为构建团簇聚合物材料的基本单元.而且,氧化锡团簇的稳定性主要与其组成成分和结构有关,与团簇大小无关.  相似文献   

11.
We have performed density functional calculations for the structure and stability of Al(13)H(n) (n=1-13) clusters. Population analysis has shown significant charge transfer occurring from the Al cluster to the H atoms. The population for Al(13) varies from 0.24 (Al(13)H) to 2.83 (Al(13)H(13)). The shape of Al(13) moieties in the Al(13)H(n) (n>/=8) clusters is significantly distorted from the icosahedral structure of Al(13) and is a "cagelike" form. Al(13)H(13) has a capped icosahedron as the ground-state structure, similar to B(13)H(13), while the shape of B(13) (planar) is different from Al(13) (icosahedral). The Al(13)H(13) cluster is predicted to be exceptionally stable on the basis of the high stabilization energy and the negative nucleus independent chemical shift value.  相似文献   

12.
The geometrical structures, stabilities, electronic and magnetic properties of Al_nZr(n = 1~14) clusters have been systematically investigated using density functional theory. It is found that for the optimized clusters the zirconium atom prefers to remain on the surface, and the growth patterns are organized as follows: Zr substituted Al_(n+1) clusters or Zr capped Aln clusters as well as Al added Al_(n-1)Zr clusters. All doped clusters exhibit relatively larger average binding energies and magnetic behaviors compared with pure Al_(n+1) counterpart. The calculated fragmentation energies and second-order difference of energies exhibit pronounced odd-even alternation behavior as a function of the cluster size when n = 3~13. In all Al_nZr clusters, there exits internal hybridization in both Al and Zr atoms and charge transfer from Al to Zr atom, which reflects the strong interactions between the two kinds of atoms. The magnetic property analysis shows that the 4d electrons of Zr atom are the main origin for cluster magnetism.  相似文献   

13.
The ZrSi(n) (n=1-16) clusters with different spin configurations have been systematically investigated by using the density-functional approach. The total energies, equilibrium geometries, growth-pattern mechanisms, natural population analysis, etc., are discussed. The equilibrium structures of different-sized ZrSi(n) clusters can be determined by two evolution patterns. Theoretical results indicate that the most stable ZrSi(n) (n=1-7) geometries, except ZrSi3, keep the analogous frameworks as the lowest-energy or the second lowest-energy Si(n+1) clusters. However, for large ZrSi(n) (n=8-16) clusters, Zr atom obviously disturbs the framework of silicon clusters, and the localized position of the transition-metal (TM) Zr atom gradually varies from the surface insertion site to the concave site of the open silicon cage and to the encapsulated site of the sealed silicon cage. It should be mentioned that the lowest-energy sandwich-like ZrSi12 geometry is not a sealed structure and appears irregular as compared with other TM@Si12 (TM = Re,Ni). The growth patterns of ZrSi(n) (n=1-16) clusters are concerned showing the Zr-encapsulated structures as the favorable geometries. In addition, the calculated fragmentation energies of the ZrSi(n) (n=1-16) clusters manifest that the magic numbers of stabilities are 6, 8, 10, 14, and 16, and that the fullerene-like ZrSi16 is the most stable structure, which is in good agreement with the calculated atomic binding energies of ZrSi(n) (n=8-16) and with available experimental and theoretical results. Natural population analysis shows that the natural charge population of Zr atom in the most stable ZrSi(n) (n=1-16) structures exactly varies from positive to negative at the critical-sized ZrSi8 cluster; furthermore, the charge distribution around the Zr atom appears clearly covalent in character for the small- or middle-sized clusters and metallic in character for the large-sized clusters. Finally, the properties of frontier orbitals and polarizabilities of ZrSi(n) are also discussed.  相似文献   

14.
Using a cluster model, we investigated the similarities and differences in chemical activity and the magnetic properties of Sc(n) clusters (n = 2-13) and their oxides, Sc(n)O, toward CO molecule adsorption via a spin-polarized density functional theory approach. The Sc(n) and Sc(n)O clusters have similar chemical activity at small sizes of n = 2-10, whereas remarkable differences are observed at large sizes of n = 11-13. More interestingly, different magnetic responses are found in the Sc(n) and Sc(n)O clusters with the presence of CO molecule: The magnetic moment is attenuated significantly for Sc(n) with n = 2, 4, 12, and 13, whereas for Sc(n)O, it is enhanced at n = 4 and 13 and is reduced for n = 7, 8, 10, and 11. In particular, the magnetic moment remarkably increases from 7 μ(B) of Sc(13)O to 13 μ(B) of Sc(13)OCO, whereas it reduces from 19 μ(B) of Sc(13) to 5 μ(B) of Sc(13)CO.  相似文献   

15.
利用密度泛函理论在广义梯度近似(GGA)和Perdew-Wang交换关联泛函条件下研究了小团簇ZrmOn (1≤m≤5, 1≤n≤2m)的几何结构和稳定性. 结果表明: 所有团簇的最低能量结构可通过锆团簇的连续氧化获得, 一般情况下O原子占据在Zr团簇的桥位. (ZrO2)3和(ZrO2)5团簇的基态结构符合配位数规则和成键规律. 此外, 讨论了氧化锆团簇的分解通道和分解能, 值得指出的是在Zr原子数相同时ZrmO2m-1团簇(除了Zr4O7)存在最大的分解能.  相似文献   

16.
A combination of experiment and density functional theory was used to investigate the energetics of CO adsorption onto several small M(x)S(y)(+) (M = Mo, W; x/y = 2/6, 3/7, 5/7, 6/8) clusters as a probe of their atomic and electronic structure. Experimentally, tandem mass spectrometry was used to measure the relative yields of M(x)S(y)(+)(CO)(n) cluster adducts formed by collisions between a beam of mass-selected M(x)S(y)(+) cluster ions and CO molecules in a high-pressure collision cell (hexapole ion guide). The most probable M(x)S(y)(+)(CO)(n) adducts observed are those with n < or = x, that is, only one CO molecule bound to each metal site. The notable exception is the M(5)S(7)(+) cluster, for which the n = 6 adduct is found to have nearly the same intensity as the n = x = 5 adduct. Density functional calculations were used to search for the lowest energy structures of the bare M(x)S(y)(+) clusters and to obtain their relative stability for sequential CO binding. The calculated trends in CO binding energies were then compared to the experimental adduct distributions for assigning the ground-state structures. In this way, it was possible to distinguish between two nearly isoenergetic ground-state isomers for the M(2)S(6)(+) and M(3)S(7)(+) clusters, as only one isomer gave a calculated CO stabilization energy trend that was consistent with the experimental data. Similar comparisons of predicted and observed CO adsorption trends also provide evidence for assigning the ground-state structures of the M(5)S(7)(+) and M(6)S(8)(+) clusters. The latter contain metallic cores with most of the sulfur atoms bonded along the edges or in the faces of the metal core structure. The n = 6 and 7 adducts of M(5)S(7)(+) are predicted to be more stable than the n = x = 5 adduct, but only the n = 6 adduct is observed experimentally. The DFT calculations show that the n = 7 adduct undergoes internal bond breaking whereas the n = 6 framework is stable, albeit highly distorted. For the M(6)S(8)(+) cluster, the calculations predict that the two lowest energy isomers can bind more than six CO molecules without fragmentation; however, the apparent binding energy drops significantly for adducts with n > 6. In general, the ability of these small M(x)S(y)(+) clusters to bind more CO molecules than the number of metal atoms is a balance between the gain in CO adsorption energy versus the strain introduced into the cluster structure caused by CO crowding, the consequences of which can be fragmentation of the M(x)S(y)(+)(CO)(n) cluster adduct (n > x).  相似文献   

17.
Ab initio theoretical calculations have been performed to study the reaction of O(2) with Ba(n) (n=2,5) clusters. Our results show that O(2) can easily chemisorb and dissociate on small Ba(n) clusters and there is no obvious energy barrier in the process of the dissociation. The local magnetic moment contributed by oxygen must vanish during the intermediate states before the O(2) dissociation. Correspondingly, local magnetic moment only decreases from 2 mu(B) to about 1 mu(B) if O(2) molecularly adsorbs onto Ba(5) cluster. The electronic structure analysis indicates that the charge transfer from Ba(n) cluster to O(2) as well as the orbital hybridization between the cluster and the oxygen molecule may play a key role in O(2) dissociation.  相似文献   

18.
A complete study on the evolution of structures and the variation of the energy properties of MPdn−1 (M = Ni and Cu; n = 2-13) clusters is presented. The study was performed employing auxiliary density functional theory. The obtained results were compared with the results of Pdn clusters studied with the same methodology. For each cluster size, several structures were studied to determine the lowest energy structures. The initial structures for the geometry optimization were taken along ab initio Born-Oppenheimer molecular dynamics trajectories. Different potentials energy surfaces were studied. All cluster structures were fully optimized without any symmetry restriction. Stable structures, frequencies, spin multiplicities, averaged bond lengths, spin density plots, different energy properties, dipole and magnetic moments as well as charge transfers are reported. This investigation indicates that the palladium clusters doped with a Ni atom are the most stable and potentially the most chemical active ones.  相似文献   

19.
Density-functional calculation within local density approximation, shows that the electronic property of a barium oxide cluster is strongly correlated with its equilibrium structure. The ground-state structures of BanOm (4 < or = n < or = 9,m < or = n) clusters can be classified into four categories: (a) compact, (b) dangling state, (c) F-center, and (d) stoichiometric. The compact cluster is metallic, almost no energy gap exists between the highest occupied and the lowest unoccupied molecular orbitals. The energy gap for the dangling state cluster is larger than that for the F-center cluster, while the stoichiometric cluster has the largest energy gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号