首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We study the Klein-Gordon oscillators in non-commutative (NC) phase space.We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field.By solving the Klein-Gordon equation in NC phase space,we obtain the energy levels of the Klein-Gordon oscillators,where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly.  相似文献   

2.
We study the Dirac and the Klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics ofa particle in a commutative space and in a constant magnetic field. The Dirac oscillator in a noncommutative space has a similar equation to the equation of motion for a relativistic fermion in a commutative space and in a magnetic field, however a new exotic term appears, which implies that a charged fermion in a noncommutative space has an electric dipole moment.  相似文献   

3.
We study the Dirac and the Klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics of a particle in a commutative space and in a constant magnetic field. The Dirac oscillator in a noncommutative space has a similar equation to the equation of motion for a relativistic fermion in a commutative space and in a magnetic field, however a new exotic term appears, which implies that a charged fermion in a noncommutative space has an electric dipole moment.  相似文献   

4.
In this work we study the quantum and Klein-Gordon oscillators in a non-commutative complex space. We show that a particle described by such oscillators behaves similarly as an electron with spin in a commutative space in an external uniform magnetic field. Therefore the wave-function $\psi (z,\bar{z} )$ takes values in C 4, spin up, spin down, particle, antiparticle, a result which is obtained by the Dirac theory. We obtain the energy levels by exact solutions. We also derive the thermodynamic functions associated to the partition function, and show that the non-commutativity effects are manifested in energy at the high temperature limit.  相似文献   

5.
We study the Klein-Gordon oscillator in commutative, noncommutative space, and phase space with psudoharmonic potential under magnetic field hence the other choice is studying the Klein-Gordon equation oscillator in the absence of magnetic field. In this work, we obtain energy spectrum and wave function in different situations by NU method so we show our results in tables.  相似文献   

6.
We study a two-dimensional lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the two-dimensional Klein-Gordon lattice with hard on-site potential. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.  相似文献   

7.
We study the Klein-Gordon oscillator in commutative, noncommutative space, and phase space with psudoharmonic potential under magnetic field hence the other choice is studying the Klein-Gordon equation oscillator in the absence of magnetic field. In this work, we obtain energy spectrum and wave function in different situations by NU method so we show our results in tables.  相似文献   

8.
As a quasi-probability distribution function in phase-space and as well as a special representation of the density matrix, the Wigner function is of great significance in Physics. This letter first makes a review of Wigner function and then provides three approaches of calculating it in non-commutative space. Finally, with the help of Moyal-Weyl multiplication and Bopp’s shift, the Wigner functions for Klein-Gordon oscillators in non-commutative space are deduced explicitly.  相似文献   

9.
10.
Using a direct substitution method, Klein-Gordon oscillator in a uniform magnetic field is researched in the noncommutative phase space (NCPS), the corresponding exact energy is obtained, and the analytic eigenfunction is presented in terms of the confluent hypergeometric. It is shown that the Klein-Gordon oscillator in uniform magnetic field in noncommutative phase space has the similar behaviors to the Landau problem in commutative space. In addition, the non-relativistic limit of the energy spectrum is obtained.  相似文献   

11.
We compare two methods for detecting phase synchronization in coupled non-phase-coherent oscillators. One method is based on the locking of self-sustained oscillators with an irregular signal. The other uses trajectory recurrences in phase space. We identify the pros and cons of both methods and propose guidelines to detect phase synchronization in data series.  相似文献   

12.
Anomalous phase synchronization in nonidentical interacting oscillators is manifest as the increase of frequency disorder prior to synchronization. We show that this effect can be enhanced when a time-delay is included in the coupling. In systems of limit-cycle and chaotic oscillators we find that the regions of phase disorder and phase synchronization can be interwoven in the parameter space such that as a function of coupling or time-delay the system shows transitions from phase ordering to disorder and back.  相似文献   

13.
Bing-Sheng Lin 《中国物理 B》2021,30(11):110203-110203
We study the Connes distance of quantum states of two-dimensional (2D) harmonic oscillators in phase space. Using the Hilbert-Schmidt operatorial formulation, we construct a boson Fock space and a quantum Hilbert space, and obtain the Dirac operator and a spectral triple corresponding to a four-dimensional (4D) quantum phase space. Based on the ball condition, we obtain some constraint relations about the optimal elements. We construct the corresponding optimal elements and then derive the Connes distance between two arbitrary Fock states of 2D quantum harmonic oscillators. We prove that these two-dimensional distances satisfy the Pythagoras theorem. These results are significant for the study of geometric structures of noncommutative spaces, and it can also help us to study the physical properties of quantum systems in some kinds of noncommutative spaces.  相似文献   

14.
In this work, we study the collective dynamics of phase oscillators in a mobile ad hoc network whose topology changes dynamically. As the network size or the communication radius of individual oscillators increases, the topology of the ad hoc network first undergoes percolation, forming a giant cluster, and then gradually achieves global connectivity. It is shown that oscillator mobility generally enhances the coherence in such networks. Interestingly, we find a new type of phase synchronization/clustering, in which the phases of the oscillators are distributed in a certain narrow range, while the instantaneous frequencies change signs frequently, leading to shuttle-run-like motion of the oscillators in phase space. We conduct a theoretical analysis to explain the mechanism of this synchronization and obtain the critical transition point.  相似文献   

15.
The Aharonov–Bohm effect in noncommutative (NC) quantum mechanics is studied. First, by introducing a shift for the magnetic vector potential we give the Schrödinger equations in the presence of a magnetic field on NC space and NC phase space, respectively. Then, by solving the Schrödinger equations, we obtain the Aharonov–Bohm phase on NC space and NC phase space, respectively.  相似文献   

16.
We describe the relation between the complete, phase and generalized synchronization of the mechanical oscillators (response system) driven by the chaotic signal generated by the driven system. We identified the close dependence between the changes in the spectrum of Lyapunov exponents and a transition to different types of synchronization. The strict connection between the complete synchronization (imperfect complete synchronization) of response oscillators and their phase or generalized synchronization with the driving system (the (1:1) mode locking) is shown. We argue that the observed phenomena are generic in the parameter space and preserved in the presence of a small parameter mismatch.  相似文献   

17.
概率波和非概率波   总被引:1,自引:1,他引:0  
对于把克莱因-戈尔登方程当作是玻色子的方程的看法提出异议,认为它是所有微观粒子均要满足的方程,但它却不能成为任何一类粒子的波动方程.提出了克-戈方程中包含着概率和非概率两类波的概念,认为概率波还要遵从一个对时和空都是一阶导数的方程,这才是粒子的波动方程.不同种类粒子性质的不同则体现在他们概率波类型的不同上.  相似文献   

18.
We investigate phase-locked solutions of a continuum field of nonlocally coupled identical phase oscillators with distance-dependent propagation delays. Equilibrium relations for both synchronous and travelling wave solutions in the parameter space characterizing the nonlocality and time delay are delineated. For the synchronous states a comprehensive stability diagram is presented that provides a heuristic synchronization condition as well as an analytic relation for the marginal stability curve. The relation yields simple stability expressions in the limiting cases of local and global coupling of phase oscillators.  相似文献   

19.
Explicit path integration is carried out for the Green's functions of special relativistic harmonic oscillators in (1+1)- and (3+1)-dimensional Minkowski space-time modeled by a Klein-Gordon particle in the universal covering space-time of the anti-de Sitter static space-time. The energy spectrum together with the normalized wave functions are obtained. In the non-relativistic limit, the bound states of the one- and three-dimensional ordinary oscillators are regained. Received: 29 June 2002 / Revised version: 3 February 2003 / Published online: 24 March 2003  相似文献   

20.
The topological AC effect on non-commutative phase space   总被引:1,自引:0,他引:1  
The Aharonov–Casher (AC) effect in non-commutative (NC) quantum mechanics is studied. Instead of using the star product method, we use a generalization of Bopp’s shift method. After solving the Dirac equations both on non-commutative space and non-commutative phase space by the new method, we obtain corrections to the AC phase on NC space and NC phase space, respectively. PACS 02.40.Gh; 11.10.Nx; 03.65.-w  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号