首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have carried out a systematic study of buckling-like mechanical instabilities in simple two- (2D) and three-dimensional (3D) symmetric foam clusters sandwiched between parallel planar walls. These instabilities occur when the wall separation w is reduced below a critical value, w*, for which the foam surface energy E reaches its minimum, E*. The clusters under investigation consist of either a single bubble, or of twin bubbles of fixed equal sizes (areas A in 2D or volumes V in 3D), which are either free to slide or pinned at the confining walls. We have numerically obtained w* for both free and pinned 2D and 3D clusters. Furthermore, we have calculated the buckled configurations of 2D twin bubbles, either free or pinned, and of 3D free twin bubbles, whose energy is independent of w and equal to the minimum energy E* of the unbuckled state. Finally, we have also predicted the critical wt* at which the terminal configurations under extension of 2D and 3D single and twin bubbles are realised. Experimental illustrations of these transitions under compression and extension are presented. Our results, together with others from the literature, suggest that a bubble cluster bounded by two parallel walls is stable only if the normal force it exerts on the walls is attractive, i.e., if dE/dw > 0; clusters that cause repulsion between the walls are unstable. We correlate this with the distribution of film orientations: films in a stable cluster cannot be too parallel to the confining walls; rather, their average tilt must be larger than for a random distribution of film orientations.  相似文献   

2.
Small cells in an experimental sample of two-dimensional foam, such as that which is contained between two glass plates, may undergo a transition to a three-dimensional form, becoming detached from one boundary. We present the first detailed observations of this phenomenon, together with computer simulations. The transition is attributed to an instability of the Rayleigh-Plateau type. A theoretical analysis is given which shows that an individual cell is susceptible to this instability only if it has less than six sides. Received 15 October 2001 and Received in final form 14 January 2002  相似文献   

3.
Foam drainage is considered in a froth flotation cell. Air flow through the foam is described by a simple two-dimensional deceleration flow, modelling the foam spilling over a weir. Foam microstructure is given in terms of the number of channels (Plateau borders) per unit area, which scales as the inverse square of bubble size. The Plateau border number density decreases with height in the foam, and also decreases horizontally as the weir is approached. Foam drainage equations, applicable in the dry foam limit, are described. These can be used to determine the average cross-sectional area of a Plateau border, denoted A, as a function of position in the foam. Quasi-one-dimensional solutions are available in which A only varies vertically, in spite of the two-dimensional nature of the air flow and Plateau border number density fields. For such situations the liquid drainage relative to the air flow is purely vertical. The parametric behaviour of the system is investigated with respect to a number of dimensionless parameters: K (the strength of capillary suction relative to gravity), α (the deceleration of the air flow), and n and h (respectively, the horizontal and vertical variations of the Plateau border number density). The parameter K is small, implying the existence of boundary layer solutions: capillary suction is negligible except in thin layers near the bottom boundary. The boundary layer thickness (when converted back to dimensional variables) is independent of the height of the foam. The deceleration parameter α affects the Plateau border area on the top boundary: weaker decelerations give larger Plateau border areas at the surface. For weak decelerations, there is rapid convergence of the boundary layer solutions at the bottom onto ones with negligible capillary suction higher up. For strong decelerations, two branches of solutions for A are possible in the K = 0 limit: one is smooth, and the other has a distinct kink. The full system, with small but non-zero capillary suction, lies relatively close to the kinked solution branch, but convergence from the lower boundary layer onto this branch is distinctly slow. Variations in the Plateau border number density (non-zero n and h) increase individual Plateau border areas relative to the case of uniformly sized bubbles. For strong decelerations and negligible capillarity, solutions closely follow the kinked solution branch if bubble sizes are only slightly non-uniform. As the extent of non-uniformity increases, the Plateau border area reaches a maximum corresponding to no net upward velocity of foam liquid. In the case of vertical variation of number density, liquid content profiles and Plateau border area profiles cease to be simply proportional to one another. Plateau border areas match at the top of the foam independent of h, implying a considerable difference in liquid content for foams which exhibit different number density profiles. Received 3 July 2001  相似文献   

4.
5.
We have examined a number of candidates for the minimum-surface-energy arrangement of two-dimensional clusters composed of N bubbles of area 1 and N bubbles of area λ ( λ≤1). These include hexagonal bubbles sorted into two monodisperse honeycomb tilings, and various mixed periodic tilings with at most four bubbles per unit cell. We identify, as a function of λ, the minimal configuration for N → ∞. For finite N, the energy of the external (i.e., cluster-gas) boundary and that of the interface between honeycombs in “phase-separated” clusters have to be taken into account. We estimate these contributions and find the lowest total energy configuration for each pair (N,λ). As λ is varied, this alternates between a circular cluster of one of the mixed tilings, and “partial wetting” of the monodisperse honeycomb of bubble area 1 by the monodisperse honeycomb of bubble area λ. Received 1 August 2002 RID="a" ID="a"e-mail: paulo@ist.utl.pt  相似文献   

6.
We construct local energy-minimizing bubble clusters in the plane that are not simply-connected. Numerical evidence suggests that these minima are not isolated.  相似文献   

7.
A recent conjecture on two-dimensional foams suggested that for fixed topology with given bubble areas there is a unique state of stable equilibrium. We present counter-examples, consisting of a ring of bubbles around a central one, which refute this conjecture. The discussion centres on a novel form of instability which causes symmetric clusters to become distorted. The stability of these bubble clusters is examined in terms of the Hessian of the energy. Received 8 November 2001  相似文献   

8.
We report an experimental study of aqueous foam imbibition in microgravity with strict mass conservation. The foam is in a Hele-Shaw cell. The bubble edge width ℓ is measured by image analysis. The penetration of the liquid in the foam, the foam imbibition, the foam inflation, and the rigidity loss are shown all to obey strict diffusion processes. The motion of bubbles needed for the foam inflation is a slow two-dimensional process with respect to the one-dimensional capillary rise of liquid. The foam is found to imbibes faster than it inflates. Received 20 May 2002 / Received in final form 21 January 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: herve.caps@ulg.ac.be  相似文献   

9.
A single film (typical of a film in a foam) moving in a confined geometry (i.e. confined between closely spaced top and bottom plates) is analysed via the viscous froth model. In the first instance the film is considered to be straight (as viewed from above the top plate) but is not flat. Instead it is curved (with a circular arc cross-section) in the direction across the confining plates. This curvature leads to a maximal possible steady propagation velocity for the film, which is characterised by the curved film meeting the top and bottom plates tangentially. Next the film is considered to propagate in a channel (i.e. between top and bottom plates and sidewalls, with the sidewall separation exceeding that of the top and bottom plates). The film is now curved along as well as across the top and bottom plates. Curvature along the plates arises from viscous drag forces on the channel sidewall boundaries. The maximum steady propagation velocity is unchanged, but can now also be associated with films meeting channel sidewalls tangentially, a situation which should be readily observable if the film is viewed from above the top plate. Observed from above, however, the film need not appear as an arc of a circle. Instead the film may be relatively straight along much of its length, with curvature pushed into boundary layers at the sidewalls.  相似文献   

10.
We have experimentally studied the dissociation/coalescence of internal Plateau borders (PBs) in simple monolayer bubble clusters, as a result of changing the liquid fraction. At large liquid content, the clusters consist of n bubbles of the same size, symmetrically placed around an internal n-sided PB (n-PB). On decreasing the liquid fraction we observed symmetry-breaking transitions in the 4- and 5-bubble clusters (but not in the 3-bubble cluster), followed by dissociation of the PBs. We used the Surface Evolver to determine the various equilibrium configurations of the corresponding two-dimensional wet clusters and their surface energies. The sequence of 4-bubble cluster configurations observed on varying the liquid fraction correlates qualitatively with that predicted on the basis of Surface Evolver calculations. The same is not true of the 5-bubble cluster.  相似文献   

11.
We present an experimental and theoretical investigation of a system composed of two soap bubbles strained between two parallel solid surfaces. The two-bubble cluster can be found in several configurations. The existence and stability of each of these states is studied as a function of the distance between the two facing surfaces. The change of this distance can induce a transition from one configuration to another; we observe that most transitions are subcritical, showing that the system is often trapped in states where the minimum of free energy is only local. The hysteretic transitions are responsible for the dissipation of elastic energy. The existence of more than one stable states for given boundaries conditions combined with the absence of thermalization means that the history of the system has to be taken into account and that there is no unique stress-strain relation. In the present system, because of its simplicity, a complete quantitative analysis of these general processes is obtained. The presented results may contribute to a better understanding of the dynamics of more complex systems such as foams or granular materials where similar processes are at work.  相似文献   

12.
We find, by counting the degrees of freedom of two-dimensional bubble clusters (finite or periodic) of given topology and bubble areas, that the Plateau laws determine a unique configuration of a finite free cluster, but allow an infinite number of configurations of a periodic cluster. Each of these configurations is associated with a particular strain (stress) state of the cluster; there is in general one unstrained configuration, which corresponds to the minimum of the (surface) energy. Configurations of given topology that satisfy Plateau's laws may only exist in certain ranges of bubble area ratios and/or strains. Received 31 May 2001 and Received in final form 12 September 2001  相似文献   

13.
The topological and metric properties of a few natural 2D random cellular structures, namely an armadillo shell structure and young soap froths, which are formed from two classes of cells, large and small, have been characterized. The topological properties of a model generated from a Kagome tiling, which mimics such random binary structures, have also been exactly calculated. The distribution of the number of cell sides is bimodal for the structures investigated. In contrast to the classical Aboav-Weaire law for homogeneous 2D random cellular structures, nm(n), the mean total number of edges of neighbouring cells of cells with n sides does not vary linearly with n. Only the nm(i, n) (i=1,2) determined separately for every class of cells are linear in n for all investigated structures. Topological properties and correlations between metric and topological properties are finally compared with the predictions of various literature models. Received: 24 December 1997 / Revised: 7 April 1998 / Accepted: 20 April 1998  相似文献   

14.
An apparatus is described for rapidly producing large quantities of foam via turbulent mixing of gas with a narrow jet of a surfactant solution inside a delivery tube. By controlling relative flow rates, the gas volume fraction in the resulting foam may be easily varied across . Using such foams, we present a comprehensive set of data for free drainage as a systematic function of gas fraction and sample geometry. The qualitative behavior can be understood in terms of simple theoretical considerations, emphasizing the importance of controlling the initial foam conditions. Quantitative features are compared with two approximate versions of the drainage equation, highlighting the crucial role of capillarity for very dry foams and small samples. Received 15 February 1999  相似文献   

15.
Physicochemical approach to the theory of foam drainage   总被引:1,自引:0,他引:1  
We have investigated theoretically the effect of surface viscoelasticity on the drainage of an aqueous foam. Former theories consider that the flow in Plateau borders is either Poiseuille flow or plug-flow. In the last case, the dissipation is attributed to flow in the nodes connecting Plateau borders. Although we do not include this dissipation in our model, we obtain a drainage equation that includes terms equivalent to those of the earlier models. We show that when the water solubility of the surfactant stabilizing the foam is low, the control parameter M for the transition between the two regimes is the ratio , where μ is the bulk viscosity, D s the surface diffusion coefficient, R the radius of curvature of the Plateau border and ɛ the surface elasticity. When the surfactant is more soluble M is rather related to the bulk diffusion coefficient. Within the frame of this approach and in view of the estimated M values, we show that the flow in Plateau borders is Poiseuille-like. Received 26 June 2001  相似文献   

16.
We have used a new experimental method to produce and deform three-dimensional monodisperse foams. Uniaxial deformation causes transitions in the foam in which the number of close-packed bubble layers perpendicular to the direction of elongation changes by one. We predict the critical strains at which such transitions occur by calculating the foam energy as a function of strain. These calculations are approximate with simplifying assumptions regarding the geometry of the bubbles. The foam deforms by nucleation and subsequent glide of dislocations which consist, in one configuration, of pairs of 12- and 16-faced cells along a close-packed direction of the foam. We describe these line defects and identify the topological transformations that occur in glide. These are neighbour switchings associated with a 4-sided face that rotates changing the adjacencies of the cells. These T4 operations occur in an avalanche and cause movement of the dislocation while preserving its identity. Received 16 July 2001  相似文献   

17.
The energy, area and excess energy of a decorated vertex in a 2D foam are calculated. The general shape of the vertex and its decoration are described analytically by a reference pattern mapped by a parametric Moebius transformation. A single parameter of control allows to describe, in a common framework, different types of decorations, by liquid triangles or 3-sided bubbles, and other non-conventional cells. A solution is proposed to explain the stability threshold in the flower problem.  相似文献   

18.
19.
We have studied the drainage of foams made from Newtonian and non-Newtonian solutions of different viscosities. Forced-drainage experiments first show that the behavior of Newtonian solutions and of shear-thinning ones (foaming solutions containing either Carbopol or Xanthan) are identical, provided one considers the actual viscosity corresponding to the shear rate found inside the foam. Second, for these fluids, a drainage regime transition occurs as the bulk viscosity is increased, illustrating a coupling between surface and bulk flow in the channels between bubbles. The properties of this transition appear different from the ones observed in previous works in which the interfacial viscoelasticity was varied. Finally, we show that foams made of solutions containing long flexible PolyEthylene Oxide (PEO) molecules counter-intuitively drain faster than foams made with Newtonian solutions of the same viscosity. Complementary experiments made with fluids having all the same viscosity but different responses to elongational stresses (PEO-based Boger fluids) suggest an important role of the elastic properties of the PEO solutions on the faster drainage.  相似文献   

20.
A liquid foam in contact with a solid surface forms a two-dimensional foam on the surface. We derive the equilibrium equations for this 2D foam when the solid surface is curved and smooth, generalising the standard case of flat Hele-Shaw cells. The equilibrium conditions at the vertices in 2D, at the edges in 3D, are invariant by conformal transformations. Regarding the films, conformal invariance only holds with restrictions, which we explicit for 3D and flat 2D foams. Considering foams confined in thin interstices between two non-parallel plates, normal incidence and Laplace’s law lead to an approximate equation relating the plate profile to the conformal map. Solutions are given for the logarithm and power laws in the case of constant pressure. The paper concludes on a comparison with available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号