首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
电池,尤其是锂离子电池的快速发展极大改变了我们的生活。从移动电子设备到新能源汽车再到电网储能,电池应用于多个领域且目前在能量密度和功率密度方面难以被取代。电池技术的向前发展要求我们对其电化学反应机理有完整的认识,这需要来自不同领域研究人员的交叉碰撞。磁共振波谱技术包括核磁共振波谱(NMR)和电子顺磁共振波谱(EPR),前者适合于研究Li、Na、P、O等电池材料中常见的轻元素,后者适合于研究Co、Mn、Fe、V等电池材料中常见的过渡金属。加上它们具有对样品无损、对结晶度无要求、能够定量分析等优点,NMR和EPR在过去三十年的电池研究中不断进步,日益成为电池表征的重要角色。本文从磁共振方法的角度出发,首先概述了固体NMR和EPR中的主要相互作用及其哈密顿表达形式,接着概述了固体NMR和EPR常用的重要方法及其在金属离子电池研究领域的代表性应用。本文有助于让我们直观地了解磁共振技术本身在金属离子电池研究领域的重要价值,并有望为解决利用固体NMR和EPR进行电池研究的过程遇到的困难提供指导。  相似文献   

2.
固体核磁共振技术是一种定量分析固体材料结构与组成的强有力手段,结合固体核磁共振和常规x-射线衍射(XRD)、 x-射线吸收谱(XAS)等表征方法可对锂/钠离子电池材料在电化学反应中的结构演化过程进行全面的分析. 例如通过固体核磁共振研究, 可获得不同合成与修饰条件下, 锂/钠离子电池电极和电解质材料体相以及电极/电解质界面层的化学组成、局域结构和离子扩散动力学等信息,为高性能电池材料的设计和研发提供重要的基础数据. 本文结合本课题组的研究工作,综述了近三年来国内外固体核磁共振技术在锂/钠离子电池电极、电解质材料以及固体电解质界面膜(SEI)研究中的应用和进展.  相似文献   

3.
惠康龙  傅继澎  高湉  唐明学 《应用化学》2020,37(12):1384-1402
低成本、长寿命、高安全性、高性能且易于大规模生产的锂/钠离子电池已被证实为重要的二次储能设备。 电极材料对锂/钠电池性能与循环寿命影响极大,金属硫化物由于具有高比容量和低电势而极具潜力成为锂/钠离子电池负极材料。 在电化学循环过程中,由于金属硫化物容易产生穿梭效应和体积变化,从而电极材料结构被破坏,进一步导致电池容量衰退、稳定性降低。 本文总结了多种金属硫化物的微观结构调控策略,从三维空间构建到与其它材料的复合,增强了电极的导电性和减缓体积变化带来的负面影响,进而获得性能优异的金属硫化物负极材料。 通过对金属硫化物的结构与性能的讨论,对其研究前景进行了积极的展望。  相似文献   

4.
锂离子电池过充特性的研究   总被引:4,自引:0,他引:4  
庞静  卢世刚  刘莎 《电化学》2005,11(4):398-401
以尖晶石锰酸锂作锂离子电池正极材料,研究其过充电特性及影响因素.结果表明,电池1C过充特性和正极活性物质的量有关,与负极活性物质的量无关.充电倍率是影响电池过充特性的关键因素,低倍率过充时,结束电池过充的主要原因是内部电解液分解殆尽;高倍率过充时,因电池内部产生的热量增加,散热相对滞后,导致电池内部温度升高隔膜熔断从而截断回路结束过充.  相似文献   

5.
在催化剂的制备过程中,常采用浸渍法将金属或活性相负载到多孔固体载体上以获得高性能的负载型催化剂;在浸渍过程中溶剂对载体的浸润能力和效果对负载活性组分的分布和状态至关重要,进而会影响催化剂的催化性能.本文利用磁共振成像(MRI)技术开展了溶剂对γ-Al2O3颗粒浸润过程的原位研究.评估了自旋回波(SE)、梯度回波(GRE)和超短时间回波(UTE) 3种不同MRI序列的成像效果,发现UTE序列在观测短横向弛豫时间(T2)值的1H MRI信号方面展现出优越的性能,应用小激发角和短恢复时间(TR)可以获得比SE和GRE序列更高时间分辨率(<1 min)的动态图像.利用UTE序列对γ-Al2O3在不同极性溶剂中的浸渍过程进行了原位监测,发现极性溶剂水和甲醇均表现出典型的自由扩散过程,即溶剂从颗粒的外缘逐渐扩散到其中心直至饱和;非极性溶剂环己烷展现了不同的浸润行为,γ-Al2O3颗粒的整体1H M...  相似文献   

6.
应用水热-溶胶凝胶法合成了Li2MnSiO4正极材料.由XRD、FTIR、固体NMR及恒流充放电等方法表征、分析样品的相组成、晶体结构和电化学性能.结果表明,合成的样品主相为Li2MnSiO4,同时存在少量Li2CO3杂质.该材料的首次放电容量可达190mAh·g-1,但在充放电循环过程中由于结构坍塌、分解导致其容量衰退明显.  相似文献   

7.
相较于传统燃油汽车,电动汽车缓慢的充电速度始终制约了其进一步推广。为电动汽车实现“加油式”快速充电能够缓解充电桩的使用压力,增加电动汽车的应用场景和市场占有率。因此,亟需开发出具有快速充放电能力的高性能锂离子电池。石墨因其低廉的价格和优异的电化学性能已经在锂离子电池负极领域得到了广泛的商业化应用,然而其较低的嵌锂电位导致在快充过程中出现析锂,损害电化学性能的同时会带来安全隐患。因此,必须对石墨进行改良处理,以适应快充技术的需要。本文系统介绍了近年来石墨负极快充化改良领域的研究进展,从成分设计,形貌调控,结构优化,电解液适配等方面进行了评述,并总结了快充石墨面临的挑战,展望了其发展前景,为推动快充技术的商业化应用提供了借鉴。  相似文献   

8.
Driven by the excessive environmental pollution caused by the over-use of non-renewable fossil-derived energy, renewable energy and electrochemical energy storage devices have made great progress in the past decades. Electrochemical energy storage devices, such as lithium-ion batteries, have the advantages of high capacity, long life cycle, and good safety performance; therefore, they have been used in various applications. For example, economical and environment-friendly electric vehicles have recently taken up increasing market share. However, when compared with vehicles propelled using fossil-derived energy, the slow charging speed of electric vehicles has always restricted their further promotion. The realization of rapid charging for electric vehicles can alleviate the high-pressure usage of charging piles as well as increase the application and market share of electric vehicles. Therefore, it is important to develop high-performance lithium-ion batteries with rapid charge and discharge capacities. The fast-charging capacity of lithium-ion batteries is limited by the slow migration of lithium ions in the electrode and the electrode/electrolyte interface. Therefore, the key to developing fast-charging lithium-ion batteries lies in the successful design of suitable electrode materials. Because of its low cost and excellent electrochemical performance, graphite has been widely used to develop the cathode of lithium-ion batteries. However, the migration of lithium ions in graphite is slow, resulting in large polarization during the high-current charge and discharge processes. In addition, the low lithium intercalation potential of graphite leads to lithium precipitation during fast charging, which can decrease the electrochemical performance and cause potential safety hazards. Therefore, graphite must be improved to meet the needs of such fast-charging devices. In this article, we systematically introduce the research progress made in recent years within the scope of rapid-charging improvement of graphite(-based) cathodes and then highlight the modification strategies for graphite with the goal of achieving functional coating, desired morphological and structural design, optimized electrolyte properties, and an improved charging protocol. Additionally, this article evaluates the advantages and disadvantages of the modification strategies as well as their application prospects. The scheme of functional coating for modifying graphite must simplify the process and improve production efficiency to meet the needs of industrial development. Morphology design should ensure satisfactory initial Coulomb efficiency, while the improvement of the electrolyte properties and optimization of the charging protocol need to consider the commercialization costs. Finally, this paper proposes further evaluation of the effects of the modification strategies based on soft-pack or cylindrical batteries to strengthen the commercialization prospect of the modification strategies.   相似文献   

9.
联苯用作锂离子电池过充安全保护剂的研究   总被引:8,自引:0,他引:8  
以联苯在高电压下的电聚合反应用于锂离子电池过充保护.实验表明,于电解液中加入的联苯可在4.5~4.75V(相对于Li/Li+)下发生氧化电聚合反应,生成的导电聚合物可使过充的电池自动放电至更安全的充电状态.同时,电聚合产物使电池内阻升高、内压增大,从而提高了与其联用的保护装置的灵敏度.在正常充放电状态下,联苯的加入基本不影响电池的综合电性能.  相似文献   

10.
本文综述了十数年来电子自旋共振(ESR)和7Li核磁共振(7Li-NMR)技术用于锂嵌碳研究的进展.ESR研究发现锂嵌碳材料中存在两种电子自旋.一种来自碳材料中的载流子电子,称为Pauli自旋.从Pauli自旋的ESR强度可推算给定锂嵌碳样品的电子态密度曲线,并进而计算能带模型机理对该样品嵌锂容量的贡献.另一种来自局域化自旋,即Curie自旋,其与嵌锂位置的关系尚不清楚.7Li-NMR测试已发现几个不同的谱峰,其峰位和强度随碳样品性质和嵌锂深度而异.一般认为,45±5×10-6(即ppm,下同)处的NMR谱线源于深度嵌锂(在LixC6中x=0.5~1)石墨化结构中的Li+,属于Knight位移;而明显小于45×10-6的谱峰则可能是来自碳材料中石墨化微结构中低浓度Li+的Knight位移,也可能是于无序微结构中共价结合的Li的化学位移.ESR与7Li-NMR在研究锂嵌碳方面有很强的互补性,联合应用此两技术可望对深入认识锂嵌碳材料的构效关系作出新贡献.  相似文献   

11.
Carbon nanofibers were fluorinated in two manners, in pure fluorine gas (direct fluorination) and with a fluorinating agent (TbF4 during the so-called controlled fluorination). The resulting fluorinated nanofibers have been investigated by solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). This underlines that the fluorination mechanisms differ since a (CF)n structural type is obtained, whatever the temperature, with the controlled reaction, whereas, during the direct process, a (C2F)n type is formed over a wide temperature range. Through a careful characterization of the products, i.e. density of dangling bonds (as internal paramagnetic centers), structural type (acting on molecular motion) and specific surface area (related to the amount of physisorbed O2), the effect of atmospheric oxygen molecules on the spin-lattice nuclear relaxation has been underlined.  相似文献   

12.
A series of Cr(III) dimers were synthesized from a parent compound [Cr2(μ-oxo)21,2-C4O4)2(H2O)4]·2H2O (I) by ligand substitution. The compounds have been analyzed using variable frequency EPR (9–110 GHz) and magnetic susceptibility as a function of field (0–9 T) and temperature (1.9–300 K) to obtain their electronic g-values, exchange energies, and zero-field parameters. The parent compound exhibits a broad maximum around 34 K characteristic of a dimer with antiferromagnetic coupling that fit the Van Vleck susceptibility model well. It was found that the maxima could be tuned from 34 to 80 K by ligand substitution of the waters. Each compound possesses a characteristic color spanning the range of teal to pink. The g-value of each compound was found to be ∼1.98 using spectral simulation. The DMSO derivative is water soluble and has a high LC50 for PC3 cancer cells, suggesting its use as a magnetic resonance imaging agent. X-ray crystal structure of the DMSO derivative [Cr2(μ-oxo)21,2-C4O4)2(C2H6SO)4]·2H2O (II) revealed that the DMSO ligands are equatorial, and the squarate groups bridge the two chromiums. This is in contrast to the previously proposed structure of the parent compound where the water ligands were axial and the equatorial squarate groups did not bridge the chromiums. These compounds are interesting because of their ease of synthesis, and their wide range of magnetic behavior. The compounds are good probes into antiferromagnetic dimer exchange by controlling the ligand field surrounding the superexchange pathway present in the molecule.  相似文献   

13.
High-pressure synthesis in an oxygen-rich atmosphere yields solid solutions between LiNiO2 and Li2NiO3 over the whole concentration range. Structural characterization of the high-pressure oxides was performed using powder XRD, SEM analysis, IR spectroscopy, EPR spectroscopy at 9.23 and 115 GHz and magnetic susceptibility measurements. The crystal structure of Li[LixNi1−x]O2 ,, changes from trigonal R-3m to monoclinic C2/m at Li-to-Ni ratio of 2 (or ). The incorporation of Li into NiO2-layers causes a decrease in the mean Li-O and Ni1-xLix-O bond distance. Li and Ni ions in the mixed Ni1-xLixO2-layers display a tendency to order at a short length scale in such a way that mimics the Li1/3Ni2/3-arrangment of the end Li[Li1/3Ni2/3]O2 composition. The charge distribution in these oxides proceeds via Ni3+ and Ni4+ ions.  相似文献   

14.
IntroductionLithium ion batteries are key components of mobiletelephones and portable computers.Among the knownLi-intercalation materials for lithium ion battery cath-odes,LiCoO2,LiNiO2,and LiMn2O4have been stud-ied extensively[1—3].LiCoO2is nowused in c…  相似文献   

15.
Developing new types of rechargeable batteries with high energy densities and low cost have received increasing attentions, aiming to reduce the dependence on high-priced lithium. Beyond Li-ion batteries, the potential alternatives including Na-ion batteries, Li-S batteries and Li-air batteries have been investigated recently, which are required to be viable for commercial applications. From this point of view, to understand the electrochemical reaction mechanisms and kinetics of these batteries has become the key challenge to make breakthroughs in the field of new energy storage. In this review, we present a critical overview of the two dimensional nanomaterials-based batteries (except Li-ion-based batteries) that could meet such demonds. To develop new energy storage devices with more promising performances, the microstructure evolution and atomic scale storage mechanism of these batteries are comprehensively summarized. In addition, the major challenges and opportunities of advanced characterization techniques are finally discussed. We do hope that this review will give the readers a clear and profound understanding of the electrochemical reaction mechanisms and kinetics of the as-discussed batteries, thus effectively contributing to the smart design of future-generation energy storage devices.  相似文献   

16.
测试了二元和多元溶剂组分的1,3-二氧戊环基LiCF3SO3电解液的粘度、离子电导率和单质硫的溶解度. 研究结果表明, 由较强的给电子能力溶剂组成的低粘度电解液较容易提高单质硫的氧化还原反应活性和可逆性能, 有利于提高单质硫在2.10 V附近的低放电平台电位和放电比容量. DOL-DME LiCF3SO3电解液能够较好地改善单质硫电极的表面钝化层结构, 促进电活性物质离子扩散和降低界面电荷传递阻抗, 从而表现出很好的放电倍率特性. 在室温下充放电流密度分别为0.1和0.2 mA/cm2时, 单质硫的首次放电比容量为792 mA·h/g, 第29次放电比容量达到412 mA·h/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号