首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

2.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

3.
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.  相似文献   

4.
Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi‐rigid organic ligands containing 1,2,4‐triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi‐rigid ligands in the self‐assembly process than by making use of rigid ligands. A new semi‐rigid ligand, 3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic salts M(NO3)2 (M = Ni and Zn, respectively) in mixed solvents. In (I), two NiII cations with the same coordination environment are linked by L ligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two‐dimensional network in the crystallographic ac plane via N—H…O, O—H…N and O—H…O hydrogen bonds, and neighbouring two‐dimensional planes are parallel and form a three‐dimensional structure via π–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnII cations. The ZnII cations are bridged by L ligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one‐dimensional nanotube via O—H…O and N—H…O hydrogen bonds along the crystallographic a direction, and the other constructs zero‐dimensional molecular cages via O—H…O and N—H…O hydrogen bonds. They are interlinked into a two‐dimensional network in the ac plane through extensive N—H…O hydrogen bonds, and a three‐dimensional supramolecular architecture is formed via π–π interactions between the centroids of the benzene rings of the quinoline ring systems.  相似文献   

5.
Three coordination complexes with CuI centres have been prepared using the symmetrical flexible organic ligands 1,3‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}propane (L1) and 1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane (L2). Crystallization of L1 with Cu(SO3CF3)2 and of L2 with Cu(BF4)2 and Cu(ClO4)2 in a CH2Cl2/CH3OH mixed‐solvent system at room temperature afforded the coordination complexes catena‐poly[[copper(I)‐μ‐1,3‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}propane] methanesulfonate dichloromethane 0.6‐solvate], {[Cu(C25H18N6O2S2)](CF3SO3)·0.6CH2Cl2}n, (I), bis(μ‐1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane)dicopper(I) bis(tetrafluoridoborate)–dichloromethane–methanol (1/1.5/1), [Cu2(C26H20N6O2S2)2](BF4)2·1.5CH2Cl2·CH3OH, (II), and bis(μ‐1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane)dicopper(I) bis(perchlorate)–dichloromethane–methanol (1/2/1), [Cu2(C26H20N6O2S2)2](ClO4)2·2CH2Cl2·CH3OH, (III). Under the control of the dumbbell‐shaped CF3SO3 anion, complex (I) forms a one‐dimensional chain and neighbouring chains form a spiral double chain. Under the control of the regular tetrahedron‐shaped BF4 and ClO4 anions, complexes (II) and (III) have been obtained as bimetallic rings, which further interact viaπ–π interactions to form two‐dimensional networks. The anions play a decisive role in determining the arrangement of these discrete molecular complexes in the solid state.  相似文献   

6.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

7.
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.  相似文献   

8.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

9.
Three new one‐ (1D) and two‐dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O}n ( 1 ), catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH}n ( 2 ), and catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O}n ( 3 ), were obtained from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐3‐yl terminal groups and from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐4‐yl terminal groups. Compound 1 displays a 2D net‐like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three‐dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen‐bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter‐anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen‐bonding systems in the crystal structures.  相似文献   

10.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

11.
A new nano‐sized rigid double‐armed oxadiazole‐bridged organic ligand, 2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl)ethenyl]phenyl}‐1,3,4‐oxadiazole, C30H20N4O, L or (I), which adopts a cis conformation in the solid state, has been synthesized and used to create the two novel metallocycle complexes (2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl‐κN)ethenyl]phenyl}‐1,3,4‐oxadiazole)diiodidocadmium(II) dichloromethane monosolvate, [CdI2(C30H20N4O)]·CH2Cl2, (II), and di‐μ‐iodido‐bis[(2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl‐κN)ethenyl]phenyl}‐1,3,4‐oxadiazole)copper(I)], [Cu2I2(C30H20N4O)2], (III). Molecules of complex (II) adopts a 20‐membered `0'‐shaped metallocycle structure with crystallographic mirror symmetry. The discrete units are linked into one‐dimensional chains through intermolecular π–π and C—H...π interactions. In (III), the two I atoms and two CuI atoms form a {Cu2(μ‐I)2} cluster. One {Cu2(μ‐I)2} cluster and two L ligands form two 20‐membered monometallic rings in a head‐to‐head fashion, leading to a discrete centrosymmetric `8'‐shaped metallocyclic complex. These metallocycles stack together via two kinds of intermolecular π–π interactions to generate a two‐dimensional network in the ac plane. The luminescence properties of (I)–(III) were investigated in the solid state at room temperature and displayed an obvious red shift.  相似文献   

12.
As an important class of heterocyclic compounds, 1,3,4‐thiadiazoles have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4‐thiadiazoles with respect to transition metal ions has been little studied. Five new crystalline copper(I) π‐complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single‐crystal X‐ray diffraction and IR spectroscopy. The compounds are bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[(tetrafluoroborato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ‐aqua‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}bis[nitratocopper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ‐aqua‐(hexafluorosilicato)bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I)–acetonitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ‐benzenesulfonato‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I) benzenesulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine (Mepeta ), C6H9N3S, was also structurally characterized. Both Mepeta and 5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine (Pesta ) (denoted L ) reveal a strong tendency to form dimeric {Cu2L 2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta )2}2+ unit allows the CuI atom site to be split into two positions with different metal‐coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O‐atom and hexafluorosilicate F‐atom coordination, resulting in the rare case of a direct CuI…FSiF52− interaction. Extensive three‐dimensional hydrogen‐bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound. To determine the hydrogen‐bond interactions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.  相似文献   

13.
The cocrystal salt tetraaquabis[trans‐1,2‐bis(pyridin‐4‐yl)ethene‐κN]iron(II) bis(1,1,3,3‐tetracyano‐2‐ethoxypropenide)–trans‐1,2‐bis(pyridin‐4‐yl)ethene (1/2), [Fe(C12H10N2)2(H2O)4](C9H5N4O)2·2C12H10N2, is a rare example of a mononuclear FeII compound with trans‐1,2‐bis(pyridin‐4‐yl)ethane (bpe) ligands. The complex cation resides on a crystallographically imposed inversion center and exhibits a tetragonally distorted octahedral coordination geometry. Both the symmetry‐independent bpe ligand and the cocrystallized bpe molecule are essentially planar. The 1,1,3,3‐tetracyano‐2‐ethoxypropenide counter‐ion is nonplanar and the bond lengths are consistant with significant electron delocalization. The extended structure exhibits an extensive O—H…N hydrogen‐bonding network with layers of complex cations joined by the cocrystallized bpe. Both the coordinated and the cocrystallized bpe are involved in π–π interactions. Hirshfeld and fingerprint plots reveal the important intermolecular interactions. Density functional theory was used to estimate the strengths of the hydrogen‐bonding and π–π interactions, and suggest that the O—H…N hydrogen bonds enhance the strength of the π‐interactions by increasing the polarization of the pyridine rings.  相似文献   

14.
The diorganotin(IV) complexes of 5‐[(E)‐2‐aryldiazen‐1‐yl]‐2‐hydroxybenzoic acid are of interest because of their structural diversity in the crystalline state and their interesting biological activity. The structures of dimethylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV), [Sn(CH3)2(C14H11N2O3)2], and di‐n‐butylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV) benzene hemisolvate, [Sn(C4H9)2(C14H11N2O3)2]·0.5C6H6, exhibit the usual skew‐trapezoidal bipyramidal coordination geometry observed for related complexes of this class. Each structure has two independent molecules of the SnIV complex in the asymmetric unit. In the dimethyltin structure, intermolecular O—H…O hydrogen bonds and a very weak Sn…O interaction link the independent molecules into dimers. The planar carboxylate ligands lend themselves to π–π stacking interactions and the diversity of supramolecular structural motifs formed by these interactions has been examined in detail for these two structures and four closely related analogues. While there are some recurring basic motifs amongst the observed stacking arrangements, such as dimers and step‐like chains, variations through longitudinal slipping and inversion of the direction of the overlay add complexity. The π–π stacking motifs in the two title complexes are combinations of some of those observed in the other structures and are the most complex of the structures examined.  相似文献   

15.
The reaction between 2‐[2‐(aminoethyl)amino]ethanol and pyridine‐2‐carbaldehyde in a 1:2 molar ratio affords a mixture containing 2‐({2‐[(pyridin‐2‐ylmethylidene)amino]ethyl}amino)ethanol (PMAE) and 2‐[2‐(pyridin‐2‐yl)oxazolidin‐3‐yl]‐N‐(pyridin‐2‐ylmethylidene)ethanamine (POPME). Treatment of this mixture with copper(II) chloride or cadmium(II) chloride gave trichlorido[(2‐hydroxyethyl)({2‐[(pyridin‐2‐ylmethylidene)amino]ethyl})azanium]copper(II) monohydrate, [Cu(C10H16N3O)Cl3]·H2O or [Cu(HPMAE)Cl3]·H2O, 1 , and dichlorido{2‐[2‐(pyridin‐2‐yl)oxazolidin‐3‐yl]‐N‐(pyridin‐2‐ylmethylidene)ethanamine}cadmium(II), [CdCl2(C16H18N4O)] or [CdCl2(POPME)], 2 , which were characterized by elemental analysis, FT–IR, Raman and 1H NMR spectroscopy and single‐crystal X‐ray diffraction. PMAE is potentially a tetradentate N3O‐donor ligand but coordinates to copper here as an N2 donor. In the structure of 1 , the geometry around the Cu atom is distorted square pyramidal. In 2 , the Cd atom has a distorted octahedral geometry. In addition to the hydrogen bonds, there are π–π stacking interactions between the pyridine rings in the crystal packing of 1 and 2 . The ability of PMAE, POPME and 1 to interact with ten selected biomolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B‐DNA) was investigated by docking studies and compared with doxorubicin.  相似文献   

16.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

17.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

18.
Two new symmetric double‐armed oxadiazole‐bridged ligands, 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate (L1) and 4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate (L2), were prepared by the reaction of 2,5‐bis(2‐hydroxy‐5‐methylphenyl)‐1,3,4‐oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. Ligand L1 can be used as an organic clip to bind CuII cations and generate a molecular complex, bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐3‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐3‐carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuII cation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of two L1 ligands in the equatorial positions and two weakly coordinating perchlorate counter‐ions in the axial positions. The two arms of the L1 ligands bend inward and converge at the CuII coordination point to give rise to a spirometallocycle. Ligand L2 binds CuI cations to generate a supramolecule, diacetonitriledi‐μ3‐iodido‐di‐μ2‐iodido‐bis(4‐methyl‐{5‐[5‐methyl‐2‐(pyridin‐4‐ylcarbonyloxy)phenyl]‐1,3,4‐oxadiazol‐2‐yl}phenyl pyridine‐4‐carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuI atoms, one L2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuI atoms are four‐coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuI atoms form a rope‐ladder‐type [Cu4I4] unit. Discrete units are linked into one‐dimensional chains through π–π interactions.  相似文献   

19.
The reaction of aryl(3‐isocyanopyridin‐4‐yl)methanones 1 , easily prepared from commercially available pyridin‐3‐amine, with aryl Grignard reagents gave, after aqueous workup, 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐ols 2 . These rather unstable alcohols were O‐acylated with Ac2O in pyridine in the presence of a catalytic amount of 4‐(dimethylamino)pyridine (DMAP) to afford the corresponding 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐yl acetates 3 in relatively good yields.  相似文献   

20.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号