首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
天然气水合物作为一种非常规的清洁能源,在全球分布广、资源量大.自20世纪90年代以来,加拿大、美国、日本、中国已经先后进行了陆域及海域的水合物试采,但发现出砂、单井日产气量低、稳产时间短等问题,试采产量远不能满足商业化开发的需求,其中核心问题是对水合物开发过程中的相变、多相多组分多场耦合渗流特征的认识不够明晰.本文根据天然气水合物开发过程中涉及的渗流场、温度场、化学场、力学场等多场耦合特征,重点综述水合物生成/分解对各物理场主要特征参数的影响,包括水合物储层的孔隙度、水合物饱和度、渗透率、相对渗透率等基础物性参数及其动态演变,天然气水合物的导热系数、比热容、热扩散系数以及水合物生成/分解热等热力学参数,天然气水合物生成、分解动力学特征,纯水合物以及含水合物沉积物的力学性质等,最后阐述了天然气水合物开发渗流中的多场耦合关系及相互作用,提出了今后水合物开发多物理场特征及耦合渗流的科学研究、技术开发的有关建议.  相似文献   

2.
天然气水合物作为一种储量大、无污染的清洁能源近些年受到了广泛关注. 近20年来,中国进行了较大范围的陆海域天然气水合物储层勘探与储量预测.2017年,中国地质调查局牵头对南海神狐海域的天然气水合物进行了基于降压渗流原理的试验性开采.国内外已进行的水合物试采工程面临着气体产量低、出砂较多等问题,其最主要的原因之一是开发过程中沉积物内复杂多相渗流机理尚不明晰.本文综述了平行毛细管模型、Kozeny模型等广泛应用于天然气水合物开发渗流分析的理论模型,对比分析了水合物开发多尺度渗流过程模拟方法,简述了国内外含水合物沉积物渗透率测试、渗流过程中沉积物物性演变以及水合物开采室内模拟等方面的渗流实验进展,总结了矿场尺度的天然气水合物储层开采过程中产气数值模拟手段,展望了多相渗流模型、储层原位含水合物样品室内测试及结构与物性演化、矿场尺度数值模拟与水平井压裂技术等应用研究的未来方向与挑战.   相似文献   

3.
天然气水合物作为一种储量大、无污染的清洁能源近些年受到了广泛关注.近20年来,中国进行了较大范围的陆海域天然气水合物储层勘探与储量预测. 2017年,中国地质调查局牵头对南海神狐海域的天然气水合物进行了基于降压渗流原理的试验性开采.国内外已进行的水合物试采工程面临着气体产量低、出砂较多等问题,其最主要的原因之一是开发过程中沉积物内复杂多相渗流机理尚不明晰.本文综述了平行毛细管模型、Kozeny模型等广泛应用于天然气水合物开发渗流分析的理论模型,对比分析了水合物开发多尺度渗流过程模拟方法,简述了国内外含水合物沉积物渗透率测试、渗流过程中沉积物物性演变以及水合物开采室内模拟等方面的渗流实验进展,总结了矿场尺度的天然气水合物储层开采过程中产气数值模拟手段,展望了多相渗流模型、储层原位含水合物样品室内测试及结构与物性演化、矿场尺度数值模拟与水平井压裂技术等应用研究的未来方向与挑战.  相似文献   

4.
深海天然气水合物降压开采过程中,沉积物的压缩会改变储层的物理力学特性,进而对天然气的开采效果产生显著影响.为揭示沉积物压缩效应下井周围储层物理力学特性演化规律,本文建立了考虑沉积物压缩效应的理论模型,通过COMSOL模拟研究了不同初始固有渗透率、初始水合物饱和度和井底压力条件下的降压开采中生产井周围储层的物理力学特性演化规律以及开采效果.结果表明:受沉积物压缩的影响,水合物分解区的渗透率随着与井筒距离的增加先增加后减少;产气与产水速率由零立即上升至峰值,然后迅速下降,并且考虑沉积物压缩时的产气与产水速率比不考虑时低;在水合物完全分解区,渗透率的大小与有效应力成负相关关系,未分解区渗透率的大小与水合物饱和度成负相关关系;井底压力越小,有效应力越大,生产井周围储层的渗透率下降越明显;初始水合物饱和度对产气与产水的影响存在拐点,饱和度拐点位于0.25与0.35之间,高水合物饱和度并不代表储层开采效果好,产气速率的高低还与储层的渗透率有关,高水合物饱和度储层的渗透率较低,产气速率较低;储层初始固有渗透率较高时显著促进了开采效果,但储层变形量较大增加了储层的不稳定性.  相似文献   

5.
裂缝性低渗透油藏流-固耦合理论与数值模拟   总被引:5,自引:0,他引:5  
根据裂缝性低渗油藏的储层特征,建立适合裂缝性砂岩油藏渗流的等效连续介质模型。将渗流力学与弹塑性力学相结合,建立裂缝性低渗透油藏的流-固耦合渗流数学模型,并给出其数值解.通过数值模拟对一实际井网开发过程中孔隙度、渗透率的变化以及开发指标进行计算,并和刚性模型以及双重介质模型的计算结果进行了分析比较.  相似文献   

6.
水合物沉积物力学性质的实验装置和研究进展   总被引:2,自引:0,他引:2  
天然气水合物是一种高效、洁净和储量巨大的新型能源,一般蕴含于砂岩、粘土以及其它土质的沉积物中.对水合物沉积物力学性质的实验研究,是水合物地层中基础稳定性分析和水合物开发评价重要的热点课题之一.本文首先介绍了水合物沉积物合成与分解实验、物性参数测量技术以及力学性质实验装置的主要组成部分和特点,然后介绍了目前国内外在水合物沉积物合成和分解及力学性质实验一体化装置和实验研究两个方面所取得的成果,最后指出在实验装置、测试技术和实验研究方面存在的问题以及今后研究的重点和方向.  相似文献   

7.
海洋天然气水合物降压开采地层井壁力学稳定性分析   总被引:4,自引:2,他引:2  
降压开采天然气水合物使其分解会导致储层孔隙度、渗透率、孔隙压力和岩层骨架有效应力发生改变, 同时降低沉积物的胶结程度, 使地层的抗剪强度和承载能力降低, 从而引起井壁失稳、海底滑坡、海底面沉降等工程问题. 为此, 在地下多相非等温数值模拟软件TOUGH+Hydrate框架内, 基于扩展的三维Biot固结理论, 考虑水合物分解相变、传热(T)、流动(H)、岩土体变形(M)等过程及其相互耦合作用, 建立了新的水合物开采传热-流动-力学(THM)耦合数学模型, 并开发有限元程序对其进行数值求解. 以中国南海神狐海域GMGS1航次SH2站位水合物储层条件为研究对象, 构建了垂直井降压开采THM耦合地层井壁稳定性分析模型, 预测了水合物开采过程中储层温-压-力场和水合物分解区的演化规律, 揭示了地层优势出砂区域和海底面沉降趋势. 结果表明: 储层降压导致地层有效应力增大, 进而引起井周地层发生沉降, 且地层的沉降主要发生在降压开采前期, 最大沉降位置位于井壁周围, 向储层内部延伸地层沉降量快速减小; 水合物分解导致井周地层力学强度降低, 加剧了储层的沉降; 井筒降压造成射孔段井壁应力集中最为明显, 从而造成井壁破坏的潜在风险, 这些区域正是水合物开采出砂防治的关键区域.   相似文献   

8.
降压开采天然气水合物使其分解会导致储层孔隙度、渗透率、孔隙压力和岩层骨架有效应力发生改变,同时降低沉积物的胶结程度,使地层的抗剪强度和承载能力降低,从而引起井壁失稳、海底滑坡、海底面沉降等工程问题.为此,在地下多相非等温数值模拟软件TOUGH+Hydrate框架内,基于扩展的三维Biot固结理论,考虑水合物分解相变、传热(T)、流动(H)、岩土体变形(M)等过程及其相互耦合作用,建立了新的水合物开采传热-流动-力学(THM)耦合数学模型,并开发有限元程序对其进行数值求解.以中国南海神狐海域GMGS1航次SH2站位水合物储层条件为研究对象,构建了垂直井降压开采THM耦合地层井壁稳定性分析模型,预测了水合物开采过程中储层温-压-力场和水合物分解区的演化规律,揭示了地层优势出砂区域和海底面沉降趋势.结果表明:储层降压导致地层有效应力增大,进而引起井周地层发生沉降,且地层的沉降主要发生在降压开采前期,最大沉降位置位于井壁周围,向储层内部延伸地层沉降量快速减小;水合物分解导致井周地层力学强度降低,加剧了储层的沉降;井筒降压造成射孔段井壁应力集中最为明显,从而造成井壁破坏的潜在风险,这些区域正是水合物开采出砂防治的关键区域.  相似文献   

9.
裂缝性低渗透油藏流固耦合渗流分析   总被引:8,自引:1,他引:8  
在低渗透油田的开发过程中,油藏流体渗流和储层岩土之间存在明显的耦合作用。本文首先研究给出了低渗裂缝性储层孔渗参数的等效方法,然后将渗流力学和岩土力学相结合,给出了低渗透裂缝性储层流固耦合渗流的数学模型,该模型不仅可以反映基质孔渗参数在开发中的变化,而且更能反映裂缝开度变化所引起的渗透率变化,而这对于低渗透裂缝性油田而言十分重要。最后对一实际井网进行了流固耦合油藏数值模拟,给出了开发过程中孔渗参数的变化及其耦合效应对油田开发的影响.  相似文献   

10.
含天然气水合物土微观力学特性研究进展   总被引:1,自引:0,他引:1  
天然气水合物作为一种资源储量大、分布范围广、能量密度高的清洁能源, 受到了国内外的广泛关注, 竞相研究安全高效、持续可控的开采方法. 充分掌握含天然气水合物土的力学特性并厘清其在开采过程中的动态演化规律, 是实现天然气水合物资源产业化开发的重要前提. 含天然气水合物土的力学响应行为本质上是其内部结构演化的宏观反映, 相关的微观力学特性研究对于深化含天然气水合物土力学特性认识具有重要的意义. 本文从天然气水合物晶体、天然气水合物与土颗粒界面、含天然气水合物土3个尺度对含天然气水合物土微观力学特性的研究现状进行了总结, 系统归纳了天然气水合物的晶体结构类型及天然气水合物的孔隙微观赋存模式; 重点介绍了计算机断层扫描、扫描电子显微镜、X射线衍射及原子力显微镜等微观测试技术原理与特点; 简述了与计算机断层扫描联用的三轴剪切实验、颗粒流程序模拟及分子动力学模拟在天然气水合物微观力学特性研究方面的最新进展; 综合现有研究结果对含天然气水合物土内颗粒界面剪切机理及微观力学理论模型进行了概述分析; 最后探讨了含天然气水合物土微观力学研究目前仍存在的不足与挑战, 并给出了针对性的建议以期促进含天然气水合物土的力学特性研究发展.   相似文献   

11.
天然气水合物由于储量大、污染低等优点, 已成为我国非常重要的战略能源, 世界各国也加快了天然气水合物的勘探和开发工作. 经济高效的开采方法以及相关的灾害控制和环境保护是对天然气水合物进行商业化开采必须要解决好的两个关键问题. 目前, 注热法和降压法的联合使用被认为是最为有效的天然气水合物开采方法. 在降压法和注热法中, 天然气水合物开采涉及传热、相变、渗流和变形等物理过程和效应, 而传热最慢且相变会消耗大量的热量, 无法直接采用常规的单纯依靠渗流原理的油气开采方案来开采天然气水合物. 我国南海的天然气水合物主要赋存于粉砂质黏土和粉细砂等类型的沉积物中, 胶结性差且埋深较浅. 常规的开采方法还不适合我国南海的水合物开采, 需要考虑新型的开采方式, 这其中提高沉积层中的热传导效率是天然气水合物开采的关键. 郑哲敏提出了机械?热联合开采的新概念方法, 利用无穷无尽表层海水的热量, 基于对流传热的原理和管道输送技术, 并兼顾类似采煤挖掘可能导致的深海浅软地层安全问题. 天然气水合物机械?热联合开采法是一种新的概念模式, 具有开采可控、高效且能有效降低地层安全性风险的优点. 本文针对该新方法的能量、装备、经济可行性进行综合评估, 阐述了针对核心问题管道含相变气液固多相流动、地层安全方面的研究进展, 展望了未来推广应用的空间.   相似文献   

12.
页岩气高效开采的力学问题与挑战   总被引:2,自引:1,他引:2  
页岩气是指赋存于富含有机质泥页岩中以吸附和游离状态为主要存在方式的天然气,中国资源量丰富,地域分布广泛.页岩气开采能缓解我国常规油气产量不足、煤化石燃料引起环境污染等问题,已成为中国绿色能源开发的重要领域.尽管北美页岩气"革命"取得了成功,目前也仅有预期产量5%~15%的采收率.与北美地区相比,中国页岩气埋藏深,赋存条件差,自然丰度低,因此,高效开采面临更多的困难和挑战.近年来,围绕国家重大能源战略需求,瞄准技术发展前沿,学术界和工业界联合对页岩气高效开采的关键科学和技术问题展开研究.本文结合近三年四川、重庆地区的页岩气试验区块遇到的新问题,针对中国未来3 500 m以下深部开采的新挑战,如地质沉积、裂缝发育构造不同、上覆压力增加、水平应力场变化等新问题,介绍和总结了目前中国页岩气高效开采面临的力学科学问题,主要包括多重耦合下的安全优质钻完井力学理论和方法、水力压裂体积改造和多尺度缝网形成机制、多尺度渗流力学特性与解吸附机理等."深部页岩气高效开采"的研究面向国家重大能源需求,科学意义重大,工程背景明确,需要工程力学、石油工程、地球物理、化学工程和环境工程等多学科专家合作,开展理论研究、物理模拟、数值模拟及现场试验等综合应用基础研究,取得高效开采页岩油气理论与技术的突破.学科交叉是研究页岩气高效开采问题、突破技术瓶颈的桥梁,只有力学与石油工程、地球科学等学科实现深度交叉融合,才能更加有效地推动页岩油气等非常规油气资源的开发.  相似文献   

13.
As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.  相似文献   

14.
This paper presents a mathematical model and analytical solutions of the problem of the growth of a hydrate layer during contact of gas and water for two limiting regimes of gas hydrate formation determined by mass transfer and heat transfer. Critical values are obtained for thermal parameters and parameters that determine the flow properties of the hydrate layer (diffusion coefficient and permeability), on which the hydrate formation regime depends.  相似文献   

15.
Coalbed methane, a naturally occurring gas in coal, is regarded as a relatively clean-burning and eco-friendly resource. During mining, coalbed methane may be leaked to the environment, leading to potential coal mine catastrophes such as coal and gas outbursts, and gas explosions. In the interest of mine stability, and to enhance resource recovery and utilisation, it is fundamentally important to understand the permeability characteristics of coal, in particular its post-peak permeability behaviour. In this paper, an in-house developed tri-axial apparatus with the ability to investigate coupled thermal–hydrological–mechanical behaviour under servo-controlled seepage has been used to carry out a series of gas permeation experiments in coal samples. The coal samples were subjected to tri-axial tests, including the simulation of coal extraction by unloading the confining pressure applied on the test specimens. The deformation and permeability characteristics of raw coal during these tests were recorded. The volume changes of the coal samples during the tests were observed to occur in three stages: Stage 1: contraction, Stage 2: little or no volume change, and Stage 3: dilation. Corresponding to the volume changes, the gas seepage can also be divided into three stages: seepage decrease, steady seepage, and accelerated seepage. Based on the observed behaviour of coal samples during the tri-axial permeation tests, an analytical model to simulate damage evolution and its effect on the permeability of coal containing gas is proposed in this paper. It may be used to study the evolution of permeability with stress changes, and to provide insights into coal and gas outbursts in practice.  相似文献   

16.
一种新的海洋浅层水合物开采法——机械-热联合法   总被引:5,自引:4,他引:1  
张旭辉  鲁晓兵 《力学学报》2016,48(5):1238-1246
天然气水合物是国家的战略能源之一.天然气水合物分解相变使其开采难度高于常规化石能源.国际天然气水合物试验性开采表明通过降压、注热等方法难以满足商业化开采的需求,尤其在水合物位于浅层、软土情况下,持续稳定且高效率的热量供给是其瓶颈.天然气水合物机械-热联合开采是一种新概念模式,即通过粉碎水合物沉积物通过管道输运并在内部分解,这样既增加了传热的表面积,又利用海水热量和对流传热提高了能量供给效率.分析表明:利用该方法开采时水温过高会导致水合物分解过快而产生不稳定流,温度过低又导致水合物二次生成或结冰;水流流速既要能使被粉碎的水合物沉积物颗粒悬浮和流动,又不能导致流动失稳.为了实现高效安全的机械-热水合物开采,经过初步分析提出原位水合物地层粉碎的颗粒直径设定在0.1~1.0 cm之间,控制水流速度为0.22~0.67m/s,温差保证在5K以上,混合物中水的体积分数大于0.85.   相似文献   

17.
碳纳米管、石墨烯和六方氮化硼等低维材料具有优异的力学和电学性质,已经引起广泛的科学兴趣。然而由电荷、分子轨道、电子结构和自旋态构成的低维材料的局域场与力学变形、机械运动和物理化学环境等外场间往往存在强烈耦合,这导致低维材料会呈现出新颖独特的物理力学性能。论文对近年来碳纳米管、石墨烯和六方氮化硼等低维材料的力学性能、力电耦合与器件原理、表面和界面结构性能调控、层间相互作用、能量耗散和摩擦等物理力学方面的研究进展进行了简要综述,并讨论了利用低维材料多场耦合特性和结构性能关联发展新型功能器件的方法和途径,以及纳米力学和纳尺度物理力学的前沿和发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号