首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
丁倩  陈涛  李政  冯兆池  王秀丽 《催化学报》2021,42(5):808-816,中插21-中插23
研究半导体光催化分解水反应中光生电荷动力学和助催化剂的作用对理解其反应机理至关重要.一般来说,助催化剂不仅可以促进半导体/助催化剂界面处的光生电荷高效分离,而且可以作为反应活性中心来直接催化表面氧化或还原反应.Cr2O3-Rh是一种重要的产氢助催化剂,通过担载Cr2O3-Rh助催化剂来提高光催化分解水的策略被应用到许多...  相似文献   

2.
半导体光催化体系的助催化剂在光生电荷分离和表面催化反应过程中扮演着重要的角色.然而,在反应条件下助催化剂的化学态是否发生改变尚不清楚.本文以钽酸钠为模型光催化剂,系统地研究了镍基助催化剂在光催化分解水反应中的化学态.结果发现,在光诱导条件下半导体钽酸钠单晶表面自发形成了金属镍和氧化镍双助催化剂.首先用传统的水热法合成只暴露单一晶面的六面体钽酸钠半导体单晶光催化剂和暴露不等同晶面的二十六面体钽酸钠半导体单晶光催化剂.原位光沉积结果显示,暴露不同晶面的二十六面体钽酸钠半导体单晶光催化剂存在晶面间的电荷分离现象,进一步利用该现象可以确定不同催化活性位上镍基助催化剂的作用.XPS结果显示,半导体钽酸钠单晶表面的镍基助催化剂存在的不同价态.高分辨透射电镜结果表明,不同晶面上的镍基助催化剂具有不同的形貌,并且通过晶格衍射条纹的对比确认了不同镍基助催化剂物种的归属和作用.将表面浸渍氧化镍的二十六面体钽酸钠半导体光催化剂用于全分解水测试发现,反应开始阶段H_2:O_2比值小于2:1,说明部分光生电子被消耗掉,用于还原氧化镍,生成了金属镍.将表面还原的金属镍光催化剂进行全分解水测试发现,反应开始阶段H_2:O_2比值大于2:1,说明部分光生空穴被消耗掉,用于氧化金属镍,生成了氧化镍,金属镍和氧化镍最终在反应的过程中达到了平衡.金属镍担载在{001}晶面上,起着还原助催化剂的作用,参与质子还原,释放出H_2;氧化镍担载在其他晶面上,扮演着氧化助催化剂,参与水的氧化,释放出O_2;金属镍和氧化镍共同促进了光催化全分解水反应,使反应活性达到了最高.这种双助催化剂的自发形成现象不仅存在于二十六面体钽酸钠单晶半导体表面,在六面体钽酸钠单晶半导体表面也同样存在,是一个普适性的现象.在六面体钽酸钠半导体单晶光催化剂表面同样可以发现不同形貌的镍基助催化剂,分别归属于金属镍和氧化镍.本文说明了助催化剂的化学态在光催化反应的条件下是可以发生改变的,并且光生电荷可以在半导体表面诱导双助催化剂的自发形成.  相似文献   

3.
氢能是实现碳中和目标的关键能源之一.光催化分解水制氢是一项绿色制氢技术,自从20世纪80年代日本科学家Honda和Fujishima首次发现了TiO2电极上的光电解水产氢以来,该技术已成为了全世界关注的研究方向.负载助催化剂能够提高电荷分离、降低过电势/活化能和加快表面反应,作为一种有效的改性策略被广泛地用于提高光催化分解水制氢效率.助催化剂的性能在很大程度上依赖其沉积方式,光沉积有助于加快光生电子-空穴对从光催化剂向助催化剂的转移,大幅改善了电荷的分离和传输效率,显著提升了催化剂的光催化性能.同时,该策略操作简单、条件温和以及无需额外添加氧化还原试剂来实现助催化剂的生成.从目前报道的助催化剂光沉积研究中可以发现,贵金属基助催化剂的光沉积在光催化分解水反应中已被广泛研究,然而贵金属价格昂贵、储量稀少,极大限制了其在大规模能源生产中的应用.为此,光沉积地球储量丰富的非贵金属助催化剂受到了研究者高度重视,近年来也取得了一些重要的进展,但尚未有综述进行报道.本文综述了近年来光沉积非贵金属光催化分解水助催化剂的研究进展.总结了非贵金属水分解助催化剂光沉积的基础,包括光沉积...  相似文献   

4.
光催化转化CO2为碳氢燃料,分解水产氢,选择性有机合成,还原N2为NH3,降解毒害的有机污染物等对解决能源环境问题有重要意义。早在1972年,研究者利用TiO2通过光催化实现了全面分解水产氢和产氧。由于低的可见光利用率,严重的载流子复合和过高的水氧化能垒导致光催化全面水分解的效率极低。由于氢相对于氧更具有经济价值,因此牺牲剂辅助的光催化产氢被大量研究。由于牺牲剂可以快速的消耗光生空穴,有效降低了氧化端的能垒,光催化产氢的效率相比于光催化水分解的效率提高了3–4个量级。然而,牺牲剂的使用不仅导致了光生空穴的浪费,成本的提高,还导致了潜在的环境问题。近些年,研究者通过将光催化还原反应和光催化氧化反应结合在一起实现了电子空穴的全面利用,并改进了氧化和还原的效率。同时,电子空穴的全面利用也有效的促进了电荷的分离并提高了催化剂的稳定性。然而,由于全面氧化还原的设计难度大,反应过程复杂,因此光催化全面氧化还原的机理尚不够明确,仍然需要大量的探索。在这篇综述中,首先从光捕获、光激发电荷分离、氧化还原反应的热力学和...  相似文献   

5.
通过精细的纳米结构和化学组成控制,开发高效的全解水纳米光催化剂是一项具有挑战性的任务.此外,在光催化水氧化的半反应过程中,抑制纳米材料严重光腐蚀也是一项艰巨的任务,需要有效地提高纳米材料光生空穴转移的动力学.为此,本文通过可控的化学反应,设计制备了具有空间催化活性位点分布的Co-MnO_2@CdS/CoS中空立方体顺序材料,并用作可见光催化全解水催化剂.采用MOFs作为自模板,经过连续的阴离子交换和阳离子交换反应,将Co掺杂的氧化助催化剂(纳米片Co-MnO_2)和还原助催化剂(纳米粒子Co S)同时整合到中空的立方体Cd S纳米材料中,使得超薄的二维纳米片Co-MnO_2与立方体的内部界面均匀接触,能够有效地提高空穴的转移效率.同时,CoS纳米粒子均匀分散在CdS纳米材料的壁上,能够有效地转移光生电子,从而提高光生电子-空穴对的分离效率.实验测试表明,Co-MnO_2@CdS/CoS中空立方体顺序材料可以为表面氧化-还原反应提供丰富的反应活性位点,同时有助于提高Cd S纳米材料光生电子-空穴对的分离和迁移效率.特别是分散在Cd S中空立方体壁面上的Co S纳米颗粒被确定为加速氢气生成的还原型助催化剂,能够促进水中氢离子生成氢气;而附着在Cd S中空立方体内壁上的Co-MnO_2纳米片被确定为促进氧演化动力学的氧化型助催化剂,能够促进水生成氧气.因此,在本实验中,得益于理想的纳米结构和化学组成方面的优势,Co-MnO_2@CdS/CoS纳米立方体显示了高效的光催化全解水性能:在没有贵金属作为助催化剂存在时,它显示了很好的整体光催化水分解效率(735.4(H_2)和361.1(O_2)μmol h~(-1) g~(-1)),超过了大多数文献报道的Cd S基催化剂光解水效率.此外,以420 nm单波长光为入射光,进行了量子效率(AQE)测试,最优的Co-MnO_2@CdS/CoS纳米材料的表观AQE达1.32%.本文合成的顺序材料为构筑具有活性位点空间分布的高效全解水催化剂提供了新的思路.  相似文献   

6.
利用大自然丰富的太阳能驱动水、二氧化碳或氮气转化为高附加值燃料(如H2, CO, CH4, CH3OH或NH3等),实现人工光合成,将储量丰富的太阳能转化为可利用的清洁化学能源,被认为是解决能源短缺和环境问题的关键技术之一,能够有效缓解能源危机和全球变暖,极具应用前景.因此,各种类型的光催化剂相继被开发出来,以满足光催化的需求.其中钴基多相催化剂是最有前途的光催化剂之一,它可以通过扩大光吸收范围、促进电荷分离、提供活性位点和降低反应能垒等途径有效提高光催化效率,为太阳能燃料转化利用开辟广阔的前景.本文首先介绍了光催化水分解、CO2还原和N2还原的基本原理.然后,总结了基于钴基催化剂的改性策略,包括形貌、晶面、结晶度、掺杂和表面修饰,重点讨论了钴基多相材料在水分解(产氢、产氧和全解水)、二氧化碳还原以及氮还原领域的光催化进展.最后,对钴基光催化剂当前面临的挑战和未来的发展作了展望和总结.提出了钴基光催化剂未来的一些研究方向.包括:(1)基于材料光催化体系的设...  相似文献   

7.
近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和Honda教授首次发现TiO2单晶电极光催化分解水可以产生氢气以来,光催化制氢被认为是实现可持续制氢最有潜力的方法之一.有效地将太阳能转换为化学能的关键是设计高效的电荷分离和运输结构.然而,现有的大多数半导体光催化剂因缺少活性位点、光生载流子易复合等缺点而无法达到较高的转换效率.因此,如何提高半导体光催化产氢的转换效率是现阶段面对的重要问题.在众多解决方法中,助催化剂的引入可以为光催化制氢反应增加活性位点,促进光生载流子的有效分离,进而有效地提高半导体光催化产氢速率.本文总结了多种不同类型的助催化剂应用于光催化产氢研究的最新进展,详细讨论了助催化剂在增强光吸收、提供活性位点、增加催化剂稳定性和促进电荷分离等方面的作用,阐明了助催化剂在光催化分解水制氢中的反应机理,同时还提出了光催化制氢的未来研究和预测.本文将助催化剂分为以下几种类别进行讨论:(1)单一助催化剂,包括金属/合金、金属氧化物/氢氧化物、金属磷化物、金属硫化物、碳基材料等助催化剂材料;(2)双助催化剂;(3)Z-Scheme助催化剂;(4)MOFs助催化剂.近年来,助催化剂材料在光催化产氢中应用的发展趋势从当初价格昂贵的贵金属趋于价格相对低廉的非贵金属,从单一体系趋于更复杂的体系.虽然现阶段关于助催化剂与基底之间的匹配还需要进一步研究,但我们相信随着技术的发展,这些问题都可以迎刃而解.希望在不久的将来,可以精确设计和构建出具有高效光催化产氢活性的催化剂体系,开发出更多新的可再生清洁能源,从而缓解能源紧缺和环境恶化等棘手问题.  相似文献   

8.
李义磊  王晓静  郝影娟  赵君  刘英  穆惠英  李发堂 《催化学报》2021,42(6):1040-1050,中插56-中插62
通过精细的纳米结构和化学组成控制,开发高效的全解水纳米光催化剂是一项具有挑战性的任务.此外,在光催化水氧化的半反应过程中,抑制纳米材料严重光腐蚀也是一项艰巨的任务,需要有效地提高纳米材料光生空穴转移的动力学.为此,本文通过可控的化学反应,设计制备了具有空间催化活性位点分布的Co-MnO2@CdS/CoS中空立方体顺序材料,并用作可见光催化全解水催化剂.采用MOFs作为自模板,经过连续的阴离子交换和阳离子交换反应,将Co掺杂的氧化助催化剂(纳米片Co-MnO2)和还原助催化剂(纳米粒子CoS)同时整合到中空的立方体CdS纳米材料中,使得超薄的二维纳米片Co-MnO2与立方体的内部界面均匀接触,能够有效地提高空穴的转移效率.同时,CoS纳米粒子均匀分散在CdS纳米材料的壁上,能够有效地转移光生电子,从而提高光生电子-空穴对的分离效率.实验测试表明,Co-MnO2@CdS/CoS中空立方体顺序材料可以为表面氧化-还原反应提供丰富的反应活性位点,同时有助于提高CdS纳米材料光生电子-空穴对的分离和迁移效率.特别是分散在CdS中空立方体壁面上的CoS纳米颗粒被确定为加速氢气生成的还原型助催化剂,能够促进水中氢离子生成氢气;而附着在CdS中空立方体内壁上的Co-MnO2纳米片被确定为促进氧演化动力学的氧化型助催化剂,能够促进水生成氧气.因此,在本实验中,得益于理想的纳米结构和化学组成方面的优势,Co-MnO2@CdS/CoS纳米立方体显示了高效的光催化全解水性能:在没有贵金属作为助催化剂存在时,它显示了很好的整体光催化水分解效率(735.4(H2)和361.1(O2)μmol h-1 g-1),超过了大多数文献报道的CdS基催化剂光解水效率.此外,以420 nm单波长光为入射光,进行了量子效率(AQE)测试,最优的Co-MnO2@CdS/CoS纳米材料的表观AQE达1.32%.本文合成的顺序材料为构筑具有活性位点空间分布的高效全解水催化剂提供了新的思路.  相似文献   

9.
光电催化分解水可以将充足的太阳能直接转化存储为绿色清洁的氢能,然而光阳极表面缓慢的析氧反应动力学严重限制了太阳能到氢能的转化效率。我们通过一种简单的S-O键合策略实现BiVO4光阳极与FeNi催化剂的界面耦合(S:BiVO4-FeNi),其光电催化分解水的光电流达到6.43 mA/cm2(1.23 VRHE, AM 1.5G)。进一步研究结果表明:界面S-O键合能够有效实现BiVO4光阳极光生电荷分离并促进空穴向FeNi催化剂表面迁移。同时,S-O键合可以进一步调控FeNi催化剂表面的电荷分布,从而有效提高光电化学分解水析氧活性和稳定性。该工作为设计构建具有高效、稳定的太阳能光电催化分解水体系提供了一种新的研究策略。  相似文献   

10.
利用光解水制氢将太阳能直接转化并储存为氢和氧的化学能是解决能源危机和环境污染的有效途径之一。光解水制氢过程中光生载流子在材料表面处发生的氧化还原反应尤为复杂,由于表面反应拥有较高的过电位以及缓慢的气体脱附速率而成为整个光解水过程中的速控步骤,因此得到了研究者的重点关注和研究。本文就催化剂表面反应过程调控的科学问题进行简要总结和展望。结合光催化水分解基本原理,(i)阐述了促进表面水分解反应速率的主要方法;(ii)介绍了表面助催化剂的作用和分类;(iii)讨论了材料表面态的钝化和保护层的包覆对表面水分解反应的影响。最后对光催化水分解表面反应研究的未来发展方向提出了若干设想。  相似文献   

11.
The photocatalytic hydrogen evolution reaction (PHER) has gained much attention as a promising strategy for the generation of clean energy. As opposed to conventional hydrogen evolution strategies (steam methane reforming, electrocatalytic hydrogen evolution, etc.), the PHER is an environmentally friendly and sustainable method for converting solar energy into H2 energy. However, the PHER remains unsuitable for industrial applications because of efficiency losses in three critical steps: light absorption, carrier separation, and surface reaction. In the past four decades, the processes responsible for these efficiency losses have been extensively studied. First, light absorption is the principal factor deciding the performance of most photocatalysts, and it is closely related to band-gap structure of photocatalysts. However, most of the existing photocatalysts have a wide bandgap, indicating a narrow light absorption range, which restricts the photocatalytic efficiency. Therefore, searching for novel semiconductors with a narrow bandgap and broadening the light absorption range of known photocatalysts is an important research direction. Second, only the photogenerated electrons and holes that migrate to the photocatalyst surface can participate in the reaction with H2O, whereas most of the photogenerated electrons and holes readily recombine with one another in the bulk phase of the photocatalysts. Hence, tremendous effort has been undertaken to shorten the charge transfer distance and enhance the electric conductivity of photocatalysts for improving the separation and transfer efficiency of photogenerated carriers. Third, the surface redox reaction is also an important process. Because water oxidation is a four-electron process, sluggish O2 evolution is the bottleneck in photocatalytic water splitting. The unreacted holes can easily recombine with electrons. Sacrificial agents are widely used in most catalytic systems to suppress charge carrier recombination by scavenging the photogenerated holes. Moreover, the low H2 evolution efficiency of most photocatalysts has encouraged researchers to introduce highly active sites on the photocatalyst surface. Based on the abovementioned three steps, multifarious strategies have been applied to modulate the physicochemical properties of semiconductor photocatalysts with the aim of improving the light absorption efficiency, suppressing carrier recombination, and accelerating the kinetics of surface reactions. The strategies include defect generation, localized surface plasmon resonance (LSPR), element doping, heterojunction fabrication, and cocatalyst loading. An in-depth study of these strategies provides guidance for the design of efficient photocatalysts. In this review, we focus on the mechanism and application of these strategies for optimizing light absorption, carrier separation and transport, and surface reactions. Furthermore, we provide a critical view on the promising trends toward the construction of advanced catalysts for H2 evolution.  相似文献   

12.
Energy crisis has become a serious global issue due to the increasing depletion of fossil fuels; therefore, it is crucial to develop environmentally friendly and renewable energy resources, such as hydrogen (H2), to replace fossil fuels. From this viewpoint, photocatalytic H2 production is considered as one of the most promising technologies. Noble metal platinum (Pt) can be applied as an efficient cocatalyst for improving the H2 production performance of photocatalytic systems; however, its high cost limits its further application. Thus, the development of novel, high-activity, and low-cost cocatalysts for replacing noble metal cocatalysts is of great significance for use in photocatalytic H2 evolution techniques. Herein, we successfully synthesized a Ni2P/graphite-like carbonitride photocatalyst (Ni2P/CN) using a conjugated polymer (SCN)n as precursor for enhanced photocatalytic H2 production under visible light illumination. Various characterization techniques, including optical and photoelectronic chemical tests, were used to investigate the structural composition, morphology, and light adsorption ability of these materials. X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy results showed that Ni2P/CN nanocomposites with good crystal structure were obtained. Scanning electron microscopy and transmission electron microscopy results revealed that the Ni2P/CN samples had a typical two-dimensional layered structure, and the Ni2P nanoparticles were uniformly loaded on the surface of the CN to form a non-noble metal promoter. UV-Vis diffuse reflectance spectra results demonstrated that the loading of Ni2P nanoparticles effectively enhances the adsorption capacity of CN to visible light. Photoluminescence spectroscopy and photocurrent (PL) results suggested that Ni2P loading to CN is beneficial for promoting the migration and separation efficiency of photogenerated carriers. Photocatalytic H2 production was conducted under visible light irradiation with triethanolamine as a sacrificial agent. The results suggest that the Ni2P/CN composite photocatalysts exhibit excellent photocatalytic reduction performance. In particular, the H2 evolution rate of the optimal Ni2P/CN nanocomposite is 623.77 μmol·h-1·g-1, which is higher than that of CN modified by noble metal Pt, i.e., 524.63 μmol·h-1·g-1. In conclusion, Ni2P nanoparticles are homogeneously attached to the surface of CN, and a strong interfacial effect exists between them, thereby forming an electron transfer tunnel that greatly inhibits the recombination of photoinduced carriers and promotes the migration of electrons from CN to Ni2P. In addition, a possible photocatalytic mechanism is proposed based on the experiments and characterizations. This work has profound significance for developing non-noble metal cocatalysts for the substitution of noble metal cocatalysts for high-efficiency photocatalytic H2 evolution.   相似文献   

13.
以质子化层状钙钛矿氧化物H1.9K0.3La0.5Bi0.1Ta2O7(HKLBT)作为产氢催化剂,Pt/WO3作为产氧催化材料进行Z型体系下完全分解水反应.考察了不同载流子传递介质及不同载流子浓度对反应活性的影响.结果表明,以Fe2+/Fe3+为载流子传递介质时可以实现水的完全分解(H2/O2体积比为2:1),8 mmol·L-1的FeCl3作为初始载流子传递介质时,产氢、产氧活性分别为66.8和31.8μmol·h-1,氢氧体积比为2.1:1.受光催化材料对载流子传递介质氧化还原速度的限制,过高的载流子传递介质浓度并不能提高光催化活性.  相似文献   

14.
The surface oxygenated intermediates present on TiO2 during photocatalytic water splitting have been identified and their accumulation on the titania surface is responsible for the deactivation of H2 evolution rate during photocatalysis.  相似文献   

15.
纳米片与空心球上之间的合理界面调控是开发高效太阳能制氢光催化剂的潜在策略。在各类光催化材料中,金属硫化物由于具有相对较窄的带隙和优越的可见光响应能力而被广泛研究。ZnIn2S4是一种层状的三元过渡金属半导体光催化剂,其带隙可控(约2.4 eV)。在众多金属硫化物光催化剂中,ZnIn2S4引起了广泛兴趣。然而,单纯的ZnIn2S4光催化活性仍然相对较差,主要是因为光生载流子的复合率较高、迁移速率较慢。在半导体光催化剂上负载助催化剂是提升光催化剂性能的一种有效方法,因为它不仅可以加速光生电子和空穴的分离,而且还可以降低质子还原反应的活化能。作为一种三元过渡金属硫化物,NiCo2S4表现出较高的导电性、较低的电负性、丰富的氧化还原特性以及优越的电催化活性。这些特性表明,NiCo2S4可以作为光催化制氢的助催化剂,以加速电荷分离和转移。此外,NiCo2S4和ZnIn2S4都属于三元尖晶石的晶体结构,这可能有助于构建具有紧密界面接触的NiCo2S4/ZnIn2S4复合物,从而提高光催化性能。本文中,将超薄ZnIn2S4纳米片原位生长到非贵金属助催化剂NiCo2S4空心球上,形成具有强耦合界面和可见光吸收的NiCo2S4@ZnIn2S4分级空心异质结构光催化剂。最优NiCo2S4@ZnIn2S4复合样品(NiCo2S4含量:ca. 3.1%)的析氢速率高达78 μmol·h-1,约是纳米片组装ZnIn2S4光催化剂析氢速率的9倍、约是1% (w, 质量分数)Pt/ZnIn2S4样品析氢速率的3倍。此外,该复合光催化剂在反应中表现出良好的稳定性。荧光和电化学测试结果表明,NiCo2S4空心球是一种有效的助催化剂,可促进光生载流子的分离和传输,并降低析氢反应的活化能。最后,提出了NiCo2S4@ZnIn2S4光催化析氢的可能反应机理。在NiCo2S4@ZnIn2S4复合光催化剂中,具有高导电性的NiCo2S4助催化剂可快速接受ZnIn2S4上的光生电子,用以还原质子生成氢气,而电子牺牲剂TEOA捕获光生空穴,进而完成光催化氧化还原循环。该研究有望为基于纳米片为次级结构的分级空心异质结光催化剂的设计合成及其光催化制氢研究提供一定的指导。  相似文献   

16.
本文通过简单的一步水热法得到Ni2P-NiS双助催化剂,之后采用溶剂蒸发法将Ni2P-NiS与g-C3N4纳米片结合构建获得无贵金属的Ni2P-NiS/g-C3N4异质结。研究结果表明,优化后的复合材料具有良好的光催化产氢活性,其产氢速率最高可到6892.7 μmol·g-1·h-1,分别为g-C3N4 (150 μmol·g-1·h-1)、15%NiS/g-C3N4 (914.5 μmol·g-1·h-1)和15%Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1)的46.1、7.5和4.4倍。这主要归因于Ni2P-NiS相比Ni2P和NiS单体具有更好的载流子转移能力,其与g-C3N4形成的肖特基势垒能有效促进光生载流子在二者界面上的分离,同时Ni2P-NiS能进一步降低析氢过电势,进而显著增强了表面析氢反应动力学。本研究为开发稳定、高效的非贵金属产氢助剂提供了实验基础。  相似文献   

17.
生物质醇/醛是一类重要的生物基平台化合物, 通过催化氧化重整可将其进一步转化为高值含氧化学品或燃料. 太阳能驱动的光电催化技术是实现生物质醇/醛氧化最为绿色高效的途径之一. 与传统光电解水制氢相比, 利用生物质醇/醛氧化来替代阳极析氧过程不仅可以提高阳极产物的附加值, 同时可以提升太阳能到氢能的转化效率. 因此, 光电解水制氢耦合生物质醇/醛氧化对绿氢提效降本和高值化学品合成具有重要意义. 本文综合评述了光电解水制氢耦合生物质醇/醛的氧化反应机理, 总结了目前光电催化技术在生物质醇/醛氧化方面的研究进展, 最后对该领域所面临的机遇和挑战进行了展望.  相似文献   

18.
H2O2广泛应用于化工和环保领域,其分解的唯一产物是水,有利于生产与自然生态系统的协调可持续发展.工业上H2O2的合成主要是通过蒽醌法间接合成,该方法能耗大,污染环境.而直接由H2与O2混合制备H2O2,具有极大的安全风险,且需要消耗大量H2.通过光催化技术将O2和H2O转化成H2O2的方法,避免了H2与O2的直接混合...  相似文献   

19.
The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble-metal-free alternative plasmonic materials have attracted ever-increasing interest.Here we report the first use of plasmonic zirconium nitride(ZrN) nanoparticles as a promising photocatalyst for water splitting.Highl...  相似文献   

20.
In this work, holey graphitic carbon nitride(HCN) was prepared by one-step thermal polymerization of hydrothermal product of melamine and then loaded with Ni/MoO2(NiMo) cocatalyst obtained by NaBH4 reduction process. The obtained material was used for photocatalytic production of H2 from water reduction and H2O2 production from O2 reduction. The best photocatalyst(1% NiMo/HCN) exhibited a H2 evolution rate of 8.08 μmol/h while no H2 was detected over 1% NiMo-modifed bulk g-C3N4(BCN) under visible light illumination. Moreover, this rate is 1.7 times higher than that of 1% Pt-modified HCN. The 1% NiMo/HCN catalyst also exhibited the highest H2O2 production activity with a value of 6.13 μmol/h. Such enhancement was ascribed to the efficient charge carrier separation and migration, which were promoted by the large specific surface area and pore volume of HCN and the synergy between MoO2 and Ni. The proposed method to obtain HCN is expected to open up new ways in development of highly-active HCN-based photocatalysts for photocatalytic reduction reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号