首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
针对后疫情时代的教学需要和地方高校的信息化教学资源的不足,通过创建微信公众号和微信群,初步探索了微信融入无机化学实验教学的新模式。课前通过公众号的推文引导学生进行有目标的预习,养成自主学习和独立思考的习惯。课堂中,先通过微信群进行预习测试,并基于测试反馈调整需要重点讨论的实验要点,再通过微信群共享师生在实验过程中对实验操作、实验现象和实验结果拍摄的照片或视频,充分激发学生兴趣,提升学生的能力。课后结合拍摄的错误操作的照片撰写公众号推文,进行实验反馈,帮助学生形成反思的习惯。  相似文献   

12.
微课是在信息化时代和新教学理念下提出的新型教学模式,针对无机化学实验教学的现状,利用微信公众号构建微课平台,辅助教师进行课堂教学,解决了无机化学实验教学中安全培训、学生预习、学时少及实验内容多、实验药品购买使用受限、不能做有毒实验等问题。通过微课教学还实现了实验内容多样化、演示操作可视化,从而提升学生学习的主观能动性,增强动手能力,规范实验操作流程,便于学生对实验重点难点的掌握,同时增强师生交流,满足各层次学生要求,提高课堂效率。  相似文献   

13.
In response to the impact of the Covid-19 epidemic on organic chemistry laboratory teaching, this article analyzes and discusses the current limitation of traditional organic chemistry laboratory teaching. Taking the "preparation of n-bromobutane" as an example, a new "online-offline and virtual-actual combination" teaching mode with the combination of "Tencent Meeting, MLabs, laboratory and WeChat group" is introduced. The practice of the new mode of teaching includes the following steps: pre-class online guiding by teacher, student preview and practice based on the virtual simulation platform, students and teacher discussion and operation in laboratory, and post-classcomprehensive assessment and Q&A", and good teaching effects have been received. It is significant in cultivating and improving the independent innovation and practical ability, and provides reference for the organic chemistry laboratory teaching reform and also lays a foundation for the construction of "outstanding course" of organic chemistry.  相似文献   

14.
新媒体微信公众号具有简单、便捷、精准、可持续、学生乐于接受等特点,已渗透到高校学习、生活的每一个角落,也直接影响着高校实验室的信息化建设与管理。为了提高教学实验室的科学化管理水平,本文提出了利用微信公众号构建基础化学实验室管理系统,介绍了相关的应用与实践,这将使实验室管理和实验教学突破时空的限制,提高实验室利用效率,为实验教学和人才培养提供更高水平的服务。  相似文献   

15.
The imbalance between teaching and learning, because of individual difference and the simplicity of teaching, can lead to interest losing on study, which will hinder the further learning. Here, based on the course content, certain scientific software are introduced in chemical laboratory lesson before and after class, thus, students can understand the experimental phenomena with the assistant of this teaching approach. Then laboratory lesson is connected with theory lessons to demonstrate the compounds they synthesized during experiment through a scientific software. The design helps the students understand the role of the software in judging and solving scientific issues. At last, the teaching practice is summarized and reconsidered to point out the essentials in the designing process.  相似文献   

16.
Online laboratory teaching with multiple dimensions was implemented based on the virtual simulation laboratory teaching project, combined with Blackborad (Bb) teaching platform and online communication media such as Tencent classroom/Tencent conference, so that students can have a three-dimensional "online laboratory class". It not only solved the laboratory teaching problem during the prevention and control period of the new coronavirus, but also expanded the form and improved the quality of laboratory teaching.  相似文献   

17.
主要介绍了基于雨课堂和企业微信双平台直播教学,以及同步慕课课程为辅的有机化学在线教学实践,并以教学实例展示了"学生为中心,教师为引导"的"疑探"式教学体系.该在线直播教学还融入以弹幕、微信群和小组作业为主的交互方式,注重学生与学生、学生与教师以及学生与教学资源的互动;通过构建多维度的考核体系,加强对学习过程的考核,提高...  相似文献   

18.
During the outbreak of COVID-19 epidemic, considering the characteristics of being an English course, the "Green Chemistry" teaching team of Sichuan University has built a multi-dimensional teaching platform based on Chaoxing Fanya platform, QQ group, QQ group class, So Jump platform, station B and WeChat official accounts, to optimize the whole teaching process from the three links of preparation before class, on-line teaching, feedback after class. Student-centered teaching was carried out by the form of flipped learning based on task-driven cooperative learning. It is found that the students have been encouraged by task-driven cooperative learning, and their English ability, professional quality, as well as high-order thinking skills such as analysis, evaluation and problem solving are improved.  相似文献   

19.
针对无机化学传统教学模式的不足,构建了无机化学微信平台。介绍了构建平台必需的微信公众号和微信群的建立过程和方法。分析了无机化学微信平台在教学中的实践效果,弥补了传统教学中的不足。讨论了无机化学微信平台的积极作用,提高了教师教学水平和学生的学习能力,达到了师生双赢的目的。  相似文献   

20.
During the fight against the new coronavirus epidemic, the "Physical Chemistry" team of Beijing Normal University used various network platforms and tools, such as MOOC of China University, Rain Classroom and WeChat Group in the teaching process. The exploration and practice of online learning of "Physical Chemistry" is carried out based on MOOC teaching, with student learning as the center and teacher guidance as the support. Taking the most difficult chapter of "fundamentals for statistical thermodynamic" as an example, we designed a complex teaching program that includes previews, watching MOOC videos in class, real-time online exercises, teachers' answers, and after-class reflection and questioning. The students were encouraged to learn independently through the reserved information, designed activities and assignments. Practice shows that the online course has cultivated the students' self-management ability, trained their critical thinking skills, and achieved good teaching results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号