首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
钠具有资源丰富、成本低廉等优势,因此钠离子电池被认为是未来替代锂离子电池的最佳候选者之一。然而,寻找合适的电极材料是当前制备高性能钠离子电池面临的难题之一。在众多候选材料中,钒酸盐材料通过引入阳离子增加钒的配位数,使得材料结构的稳定性得到提高,从而改善了钠离子电池的电化学性能。本文研究了一种原位相分离法合成V_2O_5/Fe_2V_4O_(13)纳米复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)等对电极材料形貌、组成和结构进行了表征。实验结果显示,V_2O_5/Fe_2V_4O_(13)纳米复合材料相对于V2O5纳米线材料,结构更加稳定,在0.1 A·g~(-1)电流密度下,初始放电容量由295.4 m Ah·g~(-1)提升到342 m Ah·g~(-1),循环100圈容量保持率由26.6%提高到65.8%,获得了更加优异的倍率性能(在1.0 A·g~(-1)电流密度下,容量由44 m Ah·g~(-1)提高到160 m Ah·g~(-1))。因此,V_2O_5/Fe_2V_4O_(13)纳米复合材料的研究为开拓新型高性能钠离子电池负极材料拓宽了思路。  相似文献   

2.
本文以氯化钠为硬模板、硝酸镍为金属源、葡萄糖为碳源,在氮气气氛中于750 oC通过一步热解法合成嵌镍碳纳米片,然后经酸处理得到多孔碳纳米片. 通过扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱(Raman)和比表面积测定(BET)表征多孔碳纳米片的形貌和结构. 结果显示:多孔碳纳米片孔分布均匀,孔径大小均一;经过酸处理后,碳材料的石墨化程度降低;具有较大的比表面积(约340 m2•g-1). 电化学测试表明,电极在100mA•g-1电流密度下,经过200周循环放电后比容量可维持在309.4 mAh•g-1,甚至在1000 mA•g-1 的大电流下其放电比容量仍然可达到173mAh•g-1,表现出良好的循环稳定性和倍率性能,其在钠离子电池负极材料方面具有潜在的应用前景.  相似文献   

3.
李国然  孙帅  高学平 《电化学》2012,(2):135-139
以金红石型TiO2和NaOH为原料,由水热反应制备Na2Ti6O13纳米管.然后,在含有0.1 mol.L-1NaOH的葡萄糖水溶液中反应4 h制得碳包覆的Na2Ti6O13纳米管.X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析表明,该碳包覆Na2Ti6O13纳米管外径约14~19 nm,内径约2~5 nm,长度为数百纳米,有一层厚度约为2 nm的碳层包覆在纳米管外壁.以其作为锂离子电池负极材料,恒电流充放电测试表明,在50 mA.g-1电流密度下首周可逆容量达到161 mAh.g-1,循环100周后容量保持在147 mAh.g-1.相比于Na2Ti6O13纳米管,提高了20%以上.电流密度升至1600 mA.g-1充放电,碳包覆Na2Ti6O13纳米管可逆容量仍有70 mAh.g-1左右,远高于Na2Ti6O13纳米管,表现出良好的倍率性能.  相似文献   

4.
金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。  相似文献   

5.
采用一步固相煅烧工艺制备了碳纳米管原位封装Ni3S2纳米颗粒(Ni3S2@CNT),并研究了其作为钠离子电池(SIBs)负极材料的电化学性能. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安测试、恒流充放电以及交流阻抗等研究了Ni3S2@CNT的物相结构、形貌特征以及电化学性能. 电化学测试表明,材料在100 mA·g -1电流密度下,放电容量可以达到541.6 mAh·g -1,甚至在2000 mA·g -1的大电流密度下其放电比容量也可以维持在274.5 mAh·g -1. 另外,材料在100 mA·g -1电流密度下,经过120周充放电循环后其放电和充电比容量仍然可以保持在374.5 mAh·g -1和359.3 mAh·g -1,说明其具有良好倍率性能和循环稳定性能. 良好的电化学性能归因于这种独特的碳纳米管原位封装Ni3S2纳米颗粒结构. 碳纳米管不但可以提高复合材料的导电性,也可以缓冲Ni3S2纳米颗粒在反复充放电过程中产生的体积膨胀效应,明显改善了Ni3S2@CNT负极复合材料的电化学性能.  相似文献   

6.
钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g.  相似文献   

7.
通过共沉淀以及后续的气相硫化成功制备了横向边长约为2μm,纵向厚度约为30 nm的NiCo_2S_4六角片,并研究了其作为钠离子电池负极材料的电化学性能。电化学性能测试结果显示在1000 mA·g~(-1)的电流密度下,NiCo_2S_4电极循环60次后仍然可保持约387mAh·g~(-1)的可逆比容量。此外,NiCo_2S_4电极还具有良好的倍率性能,在200、400、800、1000和2000mA·g~(-1)的电流密度下,容量分别为542、398、347、300和217mAh·g~(-1)。通过进一步动力学机制分析发现,NiCo_2S_4电极的良好的倍率性能得益于其二维片层状结构诱导产生的赝电容。上述结果表明,NiCo_2S_4纳米六角片是一种极具潜力的钠离子电池负极材料。  相似文献   

8.
通过高温热分解法制备了碳包覆氟化亚铁纳米复合材料(FeF2/C), 并对其结构、 形貌及电化学性能进行了研究. 结果表明, 该方法对FeF2实现了碳包覆, 且形成部分碳化铁(Fe3C). 电化学性能测试结果表明, 该材料在0.1C倍率下循环100周后的放电比容量达到246.7 mA·h/g, 相比于第2周的容量保持率高达93.6%, 具有良好的循环稳定性.  相似文献   

9.
10.
设计高性能的可压缩电极是实现可压缩电容器器件的关键,碳海绵(CS)具有理想的压缩形变,但却受制于有限的容量。本工作以CS为可压缩基底,通过恒电流沉积及低温热处理技术,在CS骨架上均匀沉积了α-Fe_2O_3纳米片。复合电极中Fe_2O_3的负载量随沉积时间的延长逐渐增加,且在沉积16 h后达到饱和。系统地考察了CS-Fe_2O_3复合电极在不同压力下的可压缩性能,并在三电极体系中,通过循环伏安、恒电流充放电等方法研究了CS-Fe_2O_3复合电极在3.0mol·L~(-1)KOH电解液中的电容性能。结果表明,当复合电极CS-Fe_2O_3压缩率减小时,电极的内阻增大,比电容相应减小。CSFe_2O_3-12电极在电流密度为1 A·g~(-1)时的最大比电容为294 F·g~(-1),且经过10000次恒电流充放电后,电容量仍然能保持初始值的81%,是一种潜在的电化学性能稳定的可压缩超级电容器电极材料。  相似文献   

11.
报道了Na2Ti3O7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na2Ti3O7纳米片。此外,腐蚀后的钛片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g–1的电流密度下具有175 mAh·g–1的可逆容量,在2000 mA·g–1的电流密度下循环3000周后,其容量仍保持120 mAh·g–1,容量保持率为96.5%。Na2Ti3O7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na2Ti3O7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na2Ti3O7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

12.
A high purity sheet-like Na2Ti3O7 material was synthesized by a new facile solid-state method with hollow sphere TiO2 as titanium source. X-Ray diffraction(XRD) measurement proves that no impurity phase existed when the sample was heated at 900 ℃. Charge/discharge measurement was performed in a potential range of 0.01-2.5 V at different current-rates(C-rates). The initial charge/discharge capacities are 191/424 mA·h/g at 0.1 C and still remain as high as 101 mA·h/g after 50 cycles. CV test proves that the large irreversible capacity in the initial cycle results from the formation of the solid electrolyte interface(SEI). However, the electrode presents an increased initial coulombic efficiency in a 1 mol/L NaPF6 electrolyte compared to that in a 1 mol/L NaClO4 electrolyte.  相似文献   

13.
采用Sb2O3掺杂改性Li4Ti5O12.用恒流充放电、循环伏安和交流阻抗技术对样品的电化学性能进行了测试.结果显示,当Ti:Sb=4:1时,首次放电容量高达595.84mAhog-1,首次的库仑效率为45.7%,存在不可逆容量损失.提出了可能的反应机理,并用该机理解释了影响容量衰减的因素.经过20次充放电循环后,容量保持在249.57 mAhog-1.电化学阻抗谱表明,Sb的掺杂使得电化学反应阻抗减小了.  相似文献   

14.
作为锂离子电池的理想替代品,钠离子电池因具有能源储备丰富、成本低廉等优点而受到人们的广泛关注。柔性便携式电子产品的发展亟需柔性储能器件的研制。因此,发展一种廉价、高性能的柔性钠离子电池负极材料成了科研工作者的共同目标。在此项工作中,我们通过简单的水热合成和热还原法发展了一种以柔性碳布为基底,与缺氧型的Na2Ti3O7纳米带(NTO)构成三维阵列结构的新型柔性钠离子电池负极材料。复合材料(R-NTO/CC)的导电性和活性位点得到提高,电化学性能也大幅提升,在200 mA·cm-2的电流密度下,实现100 mAh·cm-2的面积比容量,且经过200次循环后仍保留最初电容值的80%。此外,这种电极还具有优良的倍率性能,当电流密度提高到400 mA·cm-2时,仍保持69.7 mAh·cm-2的面积比容量,是未引入氧空位材料的三倍之多。这种三维缺氧的电极材料可有效提高载流子浓度,缩短离子传输通道,从而大幅提升电极的电化学性能。此工作为设计合成高储钠性能的新型的负极材料提供了一种实用有效的策略。  相似文献   

15.
以TiO2和Li2CO3分别作为钛源和锂源,聚苯胺(PANI)作为碳源和氮源,通过球磨辅助高温固相法合成N掺杂C包覆Li4Ti5O12.通过X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、元素分析仪(EA)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等对材料的结构和形貌进行了表征,并将合成材料制成电极片组装成扣式电池,测试其电化学性能.结果显示,钛源的处理对样品的性能有影响,通过对TiO2预包覆合成的N掺杂C包覆Li4Ti5O12具有优异的电化学性能,在碳、氮源的包覆比例(PANI与Li4Ti5O12的质量比)为5%时效果最佳:1C放电时其比容量为157.6mA·h/g,20C放电时其比容量仍可达到119.6mA·h/g;在10C充放电循环100次后,其比容量保持率为97.8%,表明N掺杂C包覆Li4Ti5O12具有优异的倍率性能和循环稳定性.  相似文献   

16.
Reasonably designing and synthesizing advanced electrode materials is significant to enhance the electrochemical performance of lithium ion batteries (LIBs). Herein, a metal–organic framework (MOF, Mil-125) was used as a precursor and template to successfully synthesize the porous mooncake-shaped Li4Ti5O12 (LTO) anode material assembled from nanoparticles. Even more critical, SmF3 was used to modify the prepared porous mooncake-shaped LTO material. The SmF3-modified LTO maintained a porous mooncake-shaped structure with a large specific surface area, and the SmF3 nanoparticles were observed to be attach on the surface of the LTO material. It has been proven that the SmF3 modification can further facilitate the transition from Ti4+ to Ti3+, reduce the polarization of electrode, decrease charge transfer impedance (Rct) and solid electrolyte interface impedance (Rsei), and increase the lithium ion diffusion coefficient (DLi), thereby enhancing the electrochemical performance of LTO. Therefore, the porous mooncake-shaped LTO modified using 2 wt % SmF3 displays a large specific discharge capacity of 143.8 mAh g−1 with an increment of 79.16 % compared to pure LTO at a high rate of 10 C (1 C=170 mAh g−1), and shows a high retention rate of 96.4 % after 500 cycles at 5 C-rate.  相似文献   

17.
由于正交相五氧化二铌(T-Nb2O5)为ReO3型层状结构,锂、钠离子可以在其(001)平面快速脱嵌,而在[001]方向的传输一般较难。本研究通过原位透射电子显微镜(Transmission Electron Microscope,TEM)方法研究钠在T-Nb2O5纳米片(001)面内及[001]方向的钠离子电化学嵌入行为,发现由于纳米片晶体存在大量的位错和畴界,钠离子可通过这些缺陷穿越(001)面扩散,并进而在深层的(001)面内快速扩散。同时,本研究还发现刚合成的T-Nb2O5纳米片在[001]方向上存在调制结构,存在交替分布的压应变和张应变区域,而钠离子的嵌入可以调节这些应变分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号