首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
g-C_3N_4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C_3N_4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C_3N_4光催化性能较低,其原因可归纳为:(1)g-C_3N_4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C_3N_4的量子效率较低;(2)材料在合成过程中易于结块,使g-C_3N_4的比表面积远小于理论值,严重削弱了g-C_3N_4光催化材料的制氢性能.目前已有很多关于g-C_3N_4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C_3N_4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS_2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C_3N_4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C_3N_4表面均匀分布的含氧官能团等和Ni~(2+)结合,再原位与S~(2-)反应,从而在g-C_3N_4上负载耦合紧密的NiS_2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS_2/g-C_3N_4光催化剂.NiS_2助剂在温和的反应条件下与g-C_3N_4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C_3N_4;(2)添加Ni(NO_3)_2前驱体后,Ni~(2+)离子由于静电作用紧密吸附在g-C_3N_4表面;(3)在80℃加入硫代乙酰胺(TAA),可在g-C_3N_4的表面紧密和均匀形成助剂NiS_2.表征结果证实成功制备NiS_2纳米粒子修饰的g-C_3N_4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h~(-1)g~(-1)),明显高于纯g-C_3N_4.此外,对NiS_2/g-C_3N_4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS_2促进了物质表面快速转移光生电子,使g-C_3N_4光生电荷有效分离.基于NiS_2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

2.
近年来,利用太阳光光解水制氢被认为是解决当前能源短缺和环境污染问题的重要途径之一.众所周知,助催化剂可以有效的降低光催化产氢反应的活化能,提供产氢反应的活性位点,有效的促进催化剂中光生载流子的传输与分离,从而提高光催化剂产氢体系的反应活性和稳定性.然而,鉴于贵金属助催化剂(Pt, Au和Pd等)储量低、成本高,极大地制约了其应用.因而,开发出适用于光催化水分解制氢的非贵金属助催化剂尤为重要.石墨相氮化碳(g-C_3N_4)因其具有热稳定性、化学稳定性高以及制备成本低廉等优点,成为光催化领域研究的热点.然而,由于g-C_3N_4的禁带宽度(Eg=2.7 eV)较宽,致使其对可见光的响应能力较弱,并且在光催化反应过程中其光生电子-空穴对易复合,从而导致其光催化产氢活性较低.因此,如何开发出含非贵金属助催化剂的g-C_3N_4高效、稳定的太阳光催化分解水制氢体系引起了人们极大的关注.本文通过水热法-高温氨化法首次将非贵金属Ni_3N作为助催化剂来修饰g-C_3N_4,增强其可见光光催化性能(l420 nm).采用XRD、SEM、EDS、Mapping、UV-Vis、XPS和TEM等手段对Ni_3N/g-C_3N_4光催化体系进行了表征.结果表明, Ni_3N纳米颗粒成功的负载到g-C_3N_4表面且没有改变g-C_3N_4的层状结构.此外,采用荧光光谱分析(PL)、阻抗测试(EIS)和光电流谱进行表征,结果显示, Ni_3N纳米颗粒可有效促进催化剂中光生载流子的传输与分离,抑制电子-空穴对的复合.同时,将功率为300 W且装有紫外滤光片(λ420 nm)的氙灯作为可见光光源进行光催化产氢实验结果表明,引入了一定量的Ni_3N可以极大提高g-C_3N_4的光催化活性,其中, Ni_3N/g-C_3N_4#3的产氢量为~305.4μmol·h-1·g-1,大约是单体g-C_3N_4的3倍.此外,在450nm单色光照射下, Ni_3N/g-C_3N_4光催化产氢体系的量子效率能达到~0.45%,表明Ni_3N/g-C_3N_4具有将入射电子转化为氢气的能力.循环产氢实验表明, Ni_3N/g-C_3N_4在光催化产氢过程中有着较好的产氢活性和稳定性.最后,阐述了Ni_3N/g-C_3N_4体系的光催化产氢反应机理.本文采用的原料价格低廉,性能优异,制备简单,所制材料在光催化制氢领域展现出重要前景.  相似文献   

3.
二维石墨相氮化碳(2D g-C_3N_4)由于其特殊的π-π共轭结构,较窄的禁带宽度(2.7 e V)以及比表面积大、结构稳定、绿色无毒、来源广泛等特点,在光催化领域显示出巨大的应用潜力。然而,传统g-C_3N_4由于其可见光吸收差、光生载流子复合快、量子效率低等固有缺点导致其光催化性能较差,限制其应用。迄今为止,研究人员已经设计并开发了异质结构建、缺陷工程和形貌调控等多种策略来改善g-C_3N_4光催化活性。其中,缺陷工程通过调节g-C_3N_4的表面电子结构和能级结构来提高其光捕获、光生载流子分离-迁移和目标分子吸附/活化能力,从而改善其光催化能力。本文综述了非外源因素诱导(碳空位、氮空位等)以及外源因素诱导缺陷(掺杂和功能化)修饰g-C_3N_4,调控其光电子及光催化性能的最新研究进展,并介绍了2D g-C_3N_4在光催化净化大气方面的应用进展。最后,对g-C_3N_4在光催化领域的后续研究进行了展望。这篇文章的主要目的是为全面、深入地理解缺陷调控g-C_3N_4光催化性能的机制提供思路,以期更好地指导g-C_3N_4光催化剂的后续研究及其工商业应用开发。  相似文献   

4.
江静  曹少文  胡成龙  陈春华 《催化学报》2017,(12):1981-1989
利用半导体光催化技术将太阳能转化为清洁化学能源是解决能源危机和环境问题的最有潜力的途径之一.过去几十年,许多半导体包括氧化物、硫化物和氮化物均表现出光催化活性.然而,半导体光催化的实际应用仍然受制于其较低的太阳能转化效率.解决上述问题的方法之一是发展高效的可见光光催化制氢材料.近年来,石墨相氮化碳(g-C_3N_4)作为一种聚合物半导体材料,受到了光催化研究人员的广泛关注.g-C_3N_4具有可见光吸收能力、合适的导带价带位置、良好的热稳定性和化学稳定性,且制备方法简单和结构易调控,是一种极具潜力的光催化制氢材料.然而g-C_3N_4仍然仅能吸收波长450 nm以下的光,且其光生电子和空穴极易复合,因而光催化制氢效率较低.目前,研究人员采用了多种改性方法来增强g-C_3N_4的光催化性能,其中通过元素掺杂进行能带结构调控是一种非常有效的策略.而碱金属原子(Li,Na和K)被认为可有效进入g-C_3N_4的内部结构,通过引入缺陷来拓宽g-C_3N_4的光吸收范围和提高光生电荷的分离效率.不过到目前为止,尚未见系统的比较研究来深入理解不同碱金属元素掺杂的g-C_3N_4在可见光光催化制氢中的性能差异.本文采用X射线衍射(XRD)、氮气吸附-脱附测试、紫外可见漫反射光谱(UV-visDRS)、时间分辨荧光光谱(TRPL)、X射线光电子能谱(XPS)、光电化学测试和光催化制氢测试等表征和测试手段比较研究了不同碱金属元素掺杂的g-C_3N_4在结构、光学性质、能带结构、电荷转移能力和光催化性能等方面的差异.XRD结果表明,碱金属掺杂可导致g-C_3N_4的层间距离增大,且碱金属原子半径越大,g-C_3N_4的层间距离越大.氮气吸附-脱附测试结果表明,碱金属掺杂可提高g-C_3N_4的比表面积,其中Na掺杂的最高.UV-vis DRS和XPS谱结果表明,依Li,Na,K的顺序,碱金属掺杂导致g-C_3N_4带隙逐渐变窄,使得可见光吸收能力逐渐增强,且其导带和价带位置逐渐下移.TRPL和光电化学测试结果显示,碱金属掺杂有效抑制了g-C_3N_4的光生载流子复合和促进了光生载流子的转移,其中Na掺杂的g-C_3N_4的光生载流子利用效率最高.可见光光催化制氢实验表明,碱金属掺杂显著提升了g-C_3N_4的光催化性能,其中以Na掺杂的g-C_3N_4性能最佳,其产氢速率(18.7mmol h–1)较纯的g-C_3N_4(5.0mmol h–1)可提高至3.7倍.由此可见,g-C_3N_4的掺杂改性是一个对其微结构和能带结构的优化调控过程,最终获得最优的光催化性能.  相似文献   

5.
氢能是最具应用前景的清洁能源之一,利用太阳能作为驱动力光催化水分解制取氢气已被广泛研究.作为非金属半导体光催化剂, g-C_3N_4具有合适的能带结构(2.71 eV),良好的可见光捕获能力和物理化学稳定性,因而有一定的光催化产氢能力;但是它具有可见光吸收能力(470 nm)不够、光生电子空穴容易复合等缺点,使其光催化制氢能力受到了极大限制.通过助剂修饰可有效促进载流子分离,增加反应活性位点及加速产氢动力学.因此,本文采用双助剂改性以提高g-C_3N_4的光催化制氢性能.本文首先采用原位煅烧法将银纳米粒子(AgNPs)沉积在g-C_3N_4表面(Ag/g-C_3N_4),随后利用水热法成功地将硫化镍(NiS)负载在Ag/g-C_3N_4复合材料表面.XRD, FT-IR, XPS和TEM结果表明,通过原位煅烧和水热合成法可以成功地将Ag和NiS均匀、稳定沉积在g-C_3N_4表面,并且g-C_3N_4保持原有结构不变.紫外可见吸收光谱(UV-Vis)、瞬态光电流、阻抗(EIS)和光致发光谱(PL)分析表明, AgNPs和NiS的引入不仅改善了体系的光吸收范围和强度,而且显著提高了体系光生电子和空穴的产生、分离性能,有助于提高光子利用效率.其中三元样品的最高光电流可以达到2.94′10–7 A·cm~(–2),是纯g-C_3N_4的3.1倍.对系列光催化剂的分解水制氢性能测试发现(采用300 W氙灯作为光源,三乙醇胺作为牺牲剂), 10wt%-NiS/1.0wt%-Ag/CN样品具有最优异的光催化分解水制氢性能,产氢速率可达9.728 mmol·g–1·h–1,是纯g-C_3N_4的10.82倍,二元10wt%-NiS/CN的3.45倍, 1.0wt%-Ag/CN的2.77倍.三元样品反应前后的XRD特征峰位置没有发生变化,循环四次后样品仍具有83%的催化活性,证明其具有良好的制氢稳定性.10 wt%-NiS/1.0 wt%-Ag/CN样品在可见光下(λ 420 nm)的制氢量子效率为1.21%.三元体系光催化产氢性能增强的原因在于:(1)Ag纳米颗粒的局域表面等离子体效应使得三元体系的光捕获能力得到提高;(2)Ag NPs和NiS负载在g-C_3N_4上共同促进了光生电子空穴的产生和分离;(3)Ag NPs和Ni S作为优良的析氢助催化剂沉积在g-C_3N_4表面上可以有效地提高产氢动力学.本文构建的NiS/Ag/g-C_3N_4复合体系为g-C_3N_4基复合光催化剂的设计及制备提供了新的思路.  相似文献   

6.
近年来,随着全球科学技术的进步和工业的不断发展,人们的经济生活水平有了极大的提高,但同时也造成能源短缺和环境污染问题,成为21世纪制约经济和社会进一步发展的严重瓶颈,因此开发和研究环保和可再生的绿色能源技术是一项紧迫任务.自首次报道用二氧化钛为电极、采用光电化学分解水制氢之后,光催化分解水制氢引起了人们极大的兴趣,并被认为是缓解全球能源问题的最有希望的解决方案之一.其中,实现有效的太阳能制氢生产中最关键因素是设计稳定、高效和经济的光催化剂,并且能够利用可见光区进行工作(入射到地球上46%的太阳光谱是可见光).聚合物石墨相氮化物(g-C_3N_4)作为一种对可见光响应的新型无机非金属半导体光催化剂,被认为是一种"可持续"有机半导体材料,目前已并被广泛应用于各种光催化反应中.但是由于其光生电子-空穴在动力学上具有相对较大的复合速率,单纯g-C_3N_4的光催化活性远远达不到人们的要求.因此,应该尽可能的提高电荷转移动力学来抑制g-C_3N_4中光生电荷的复合,从而提高光生电荷从g-C_3N_4转移至反应位点的迁移速率.在前期研究的基础上,本文利用钒氧酞菁(VOPc)分子通过p-p相互作用以修饰g-C_3N_4的表面和电子结构,从而提高其光生电子-空穴的分离效率,最终极大提升其可见光光催化制氢性能.本文采用紫外可见光谱(UV-vis),高分辨透射电镜(HRTEM),傅里叶变换红外光谱(FT-IR), X-射线能谱(XPS),稳态光致发光光谱(PL),时间分辨光致发光光谱(TRPL),光电流和阻抗等一系列表征手段研究了VOPc/g-C_3N_4(VOPc/CN)复合催化剂的结构和性质.FT-IR, XPS及mapping等结果表明, VOPc分子已经成功引入到g-C_3N_4表面且未对其晶相、电子结构及其纳米片结构产生显著影响;UV-vis结果显示, VOPc分子成功引入并通过非共价键的p-p作用连接.总之,引入VOPc分子即拓展了催化剂对可见光的响应区域,又有利于光生载流子的传递和光生电子-空穴对的有效分离.当引入4wt%的VOPc分子时, VOPc/CN复合光催化剂的产氢速率增加至65.52μmolh-1, 420 nm处的量子效率高达6.29%,是单纯g-C_3N_4的6倍.此外,该催化剂在可见光下连续照射反应20 h后,其光催化活性几乎没有降低,表现出良好的光化学稳定性.由于两者LUMO和HOMO轨道之间的良好匹配,在光催化过程中光生电子-空穴在VOPc和g-C_3N_4之间实现了空间分离,有效阻止了光生电子-空穴对的复合,因而g-C_3N_4光催化制氢性能显著提升.同时对比了利用NiS和Ni Px做助剂的g-C_3N_4的可见光光催化制氢性能.结果显示, VOPc/CN复合光催化剂具有较好的光催化性能.总之,本文通过一种简单、经济、有效的方法将两种新兴的功能材料有机地复合在一起,用于可见光照射下高效光催化制氢,为以后合理地开发用于太阳能转换的更为高效经济的材料提供了一个新的思路.  相似文献   

7.
采用一种新颖有效的席夫碱化学法合成吡啶共聚改性的g-C_3N_4,其可见光催化产氢性能较(由尿素为前驱物制备的)纯g-C_3N_4显著增强。在此基础上,又进一步通过一步煅烧的方法构建了吡啶改性g-C_3N_4和N掺杂还原氧化石墨烯(N-r GO)的复合物,其产氢活性得到了进一步地提高,氢气产量最高达到304μmol?h-1,分别为纯g-C_3N_4和吡啶改性g-C_3N_4的11.7倍和3.1倍。除了其增强的可见光吸收能力,增大的表面积,我们认为:吡啶环作为分子内电子受体,N-r GO作为"电子转移活性位",二者共同促进了光生载流子分离和转移,从而显著增强了该复合体系的光催化活性。  相似文献   

8.
氢气是一种可替代传统燃料的理想清洁能源,利用光催化技术分解水制氢是制取氢气的有效途径之一。无机半导体光催化材料具有较高的活性和稳定性,且原料丰富,易加工改性.目前针对光催化技术的应用,大量的研究工作都集中在开发可见光响应光催化剂,以提高对可见光的利用率.同时,非金属聚合物半导体因其特殊的光电性质,在光催化应用研究中越来越受到关注,如庚嗪基微孔聚合物(HMP)和共价三嗪基骨架(CTF).石墨相碳化氮(g-C_3N_4)是一种典型非金属二维聚合物半导体,被认为是一种非常有价值的光催化材料.然而,其较低的光生电子的传输效率限制了其实际应用,因此诸多研究对g-C_3N_4的物理化学结构进行优化,如半导体耦合、共聚合、纳米结构设计和掺杂.非金属掺杂是一种有效的方法,由于原子电负性差异引起的电荷分离可有效改善载流子传输效率,且保持半导体的非金属性质.通过O,B,P和S等掺杂可以扩大可见光响应范围,并调节能带位置以改善光催化活性.除了常见的单一非金属掺杂,金属和非金属元素或多非金属元素共掺杂的办法同样可提高g-C_3N_4的光催化性能.本工作通过两步法对双氰胺、尿素和碘化1-乙基-3-甲基咪唑的混合物直接热聚合,合成C-I共掺杂的多孔g-C_3N_4,其在可见光照射下表现出较高的产氢活性和稳定性.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、荧光光谱(PL)和电化学实验等方法对多孔掺杂g-C_3N_4结构进行详细表征和分析.在助催化剂Pt和电子牺牲剂(三乙醇胺)存在的条件下,采用可见光(400 nm)照射分解水产氢的方法评价其光催化活性.结果表明,后热处理和碘离子液掺杂对g-C_3N_4材料的结构和性能具有较大影响.C-I共掺杂和后热处理使催化剂产物颗粒尺寸减小,形成多孔片层状紧密堆积,比表面积和孔隙率显著增加,吸收带边发生蓝移.后热处理使样品层间距减小,聚合度增加,有利于电荷传输,C-I共掺杂后出现更多的缺陷,但没有改变其层状堆积的特性.XPS结果表明,样品中碘元素以I~-和I~(5+)的形式存在,改性后催化剂C/N比明显增加,sp~2芳环N含量增加,表面氨基含量降低,表明后热处理和C-I共掺杂没有改变多孔g-C_3N_4的基本骨架,共轭结构更加完善.PL和光电流结果表明,改性后样品的PL强度均显著降低,并且随着掺杂量的增加而逐渐降低,表明共掺杂可抑制光生电荷的复合.电化学测试结果表明,后热处理和C-I共掺杂的样品界面电荷转移电阻降低,导电率和电荷迁移率增加,从而有助于提高光催化性能.光解水产氢性能测试表明,后热处理和C-I共掺杂有利于催化剂产氢速率的提高,改性后CNIN_(0.2)的产氢速率达168.2μmol/h,是纯氮化碳的9.8倍.经过多次循环测试,其产氢性能保持稳定而没有显著下降,表明其产氢稳定性较好.  相似文献   

9.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

10.
本文通过水热法合成球状Bi_2MoO_6,采用热处理法复合Bi_2MoO6和g-C_3N_4,制备出不同质量比例的g-C_3N_4/Bi_2MoO_6复合型光催化剂.利用X射线衍射、扫描电子显微镜、紫外-可见分光光度计、光致发光光谱仪等技术对所制备的光催化剂进行基本物性表征,分析了样品的微观结构、尺寸形貌和光学性质.g-C_3N_4与Bi_2MoO_6之间理想匹配的能带结构促进了光生载流子转移,进而提升光生电子和空穴的分离率,达到提高光催化活性的目的.g-C_3N_4/Bi_2MoO_6复合材料在可见光下展现出对罗丹明B高效的降解活性,其中Bi_2MoO_6与g-C_3N_4质量比为10%时展示出最佳的光催化降解性能,其降解速率分别为纯g-C_3N_4和Bi_2MoO_6的6.5和3.3倍.  相似文献   

11.
Here, we fabricated a pyridine-copolymerized g-C3N4 by a novel and cost-effective approach based on Schiff-base chemistry. Thus produced g-C3N4 showed significantly enhanced and stable visible-light photocatalytic H2 evolution performance compared to pristine g-C3N4 obtained from urea. Subsequently, we constructed a composite of pyridine-modified g-C3N4 and N-doped reduced graphene oxide (N-rGO) by facile one-pot calcination to elevate the photocatalytic efficiency further. The peak H2 production rate achieved using this composite was 304 μmol·h-1, about 11.7 and 3.1 times as those obtained using pure g-C3N4 and pyridine-modified g-C3N4, respectively. In addition to enhanced visible light absorbance and enlarged surface area, the promoted separation, transfer, and surface reactivity of photogenerated charge carriers by the pyridine ring as intramolecular electron acceptor and N-rGO as "electron-transfer activation region" are considered responsible for the remarkably enhanced photocatalytic activity.  相似文献   

12.
The growing frustration from facing energy shortages and unbalanced environmental issues has obstructed the long-term development of human society. Semiconductor-based photocatalysis, such as water splitting, transfers solar energy to storable chemical energy and is widely considered an economic and clean solution. Although regarded as a promising photocatalyst, the low specific surface area of g-C3N4 crucially restrains its photocatalytic performance. The macro-mesoporous architecture provides effective channels for mass transfer and full-light utilization and improved the efficiency of the photocatalytic reaction. Herein, g-C3N4 with an inverse opal (IO) structure was rationally fabricated using a well-packed SiO2 template, which displayed an ultrahigh surface area (450.2 m2·g-1) and exhibited a higher photocatalytic H2 evolution rate (21.22 μmol·h-1), almost six times higher than that of bulk g-C3N4 (3.65 μmol·h-1). The IO g-C3N4 demonstrates better light absorption capacity than bulk g-C3N4, primarily in the visible spectra range, owing to the multiple light scattering effect of the three-dimensional (3D) porous structure. Meanwhile, a lower PL intensity, longer emission lifetime, smaller Nyquist semicircle, and stronger photocurrent response (which synergistically give rise to the suppressed recombination of charge carriers) decrease the interfacial charge transfer resistance and boost the formation of photogenerated electron-hole pairs. Moreover, the existing N vacancies intensify the local electron density, helping increase the number of photoexcitons. The N2 adsorption-desorption test revealed the existence of ample mesopores and macropores and high specific surface area in IO g-C3N4, which exposes more active edges and catalytic sites. Optical behavior, electron paramagnetic resonance, and electrochemical characterization results revealed positive factors, including enhanced light utilization, improved photogenerated charge separation, prolonged lifetime, and fortified IO g-C3N4 with excellent photocatalytic performance. This work provides an important contribution to the structural design and property modulation of photocatalysts.   相似文献   

13.
Photocatalytic technology can effectively solve the problem of increasingly serious water pollution, the core of which is the design and synthesis of highly efficient photocatalytic materials. Semiconductor photocatalysts are currently the most widely used photocatalysts. Among these is graphitic carbon nitride (g-C3N4), which has great potential in environment management and the development of new energy owing to its low cost, easy availability, unique band structure, and good thermal stability. However, the photocatalytic activity of g-C3N4 remains low because of problems such as wide bandgap, weakly absorb visible light, and the high recombination rate of photogenerated carriers. Among various modification strategies, doping modification is an effective and simple method used to improve the photocatalytic performance of materials. In this work, Cu/g-C3N4 photocatalysts were successfully prepared by incorporating Cu2+ into g-C3N4 to further optimize photocatalytic performance. At the same time, the structure, morphology, and optical and photoelectric properties of Cu/g-C3N4 photocatalysts were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectric tests. XRD and XPS were used to ensure that the prepared photocatalysts were Cu/g-C3N4 and the valence state of Cu was in the form of Cu2+. Under visible light irradiation, the photocatalytic activity of Cu/g-C3N4 and pure g-C3N4 photocatalysts were investigated in terms of the degradation of RhB and CIP by comparing the amount of introduced copper ions. The experimental results showed that the degradation ability of Cu/g-C3N4 photocatalysts was stronger than that of pure g-C3N4. The N2 adsorption-desorption isotherms of g-C3N4 and Cu/g-C3N4 demonstrated that the introduction of copper had little effect on the microstructure of g-C3N4. The small difference in specific surface area indicates that the enhanced photocatalytic activity may be attributed to the effective separation of photogenerated carriers. Therefore, the enhanced photocatalytic degradation of RhB and CIP over Cu/g-C3N4 may be due to the reduction of carrier recombination rate by copper. The photoelectric test showed that the incorporation of Cu2+ into g-C3N4 could reduce the electron-hole recombination rate of g-C3N4 and accelerate the separation of electron-hole pairs, thus enhancing the photocatalytic activity of Cu/g-C3N4. Free radical trapping experiments and electron spin resonance indicated that the synergistic effect of superoxide radicals (O2•−), hydroxyl radicals (•OH) and holes could increase the photocatalytic activity of Cu/g-C3N4 materials.  相似文献   

14.
Developing novel and efficient catalysts is a significant way to break the bottleneck of low separation and transfer efficiency of charge carriers in pristine photocatalysts. Here, two fresh photocatalysts, g-C3N4@Ni3Se4 and g-C3N4@CoSe2 hybrids, are first synthesized by anchoring Ni3Se4 and CoSe2 nanoparticles on the surface of well-dispersed g-C3N4 nanosheets. The resulting materials show excellent performance for photocatalytic in situ hydrogen generation. Pristine g-C3N4 has poor photocatalytic hydrogen evolution activity (about 1.9 μmol·h-1) because of the rapid recombination of electron-hole pairs. However, the hydrogen generation activity is well improved after growing Ni3Se4 and CoSe2 on the surface of g-C3N4, owing to the unique effect of these selenides in accelerating the separation and migration of charge carriers. The hydrogen production activities of G-C3N4@Ni3Se4 and g-C3N4@CoSe2 are about 16.4 μmol·h-1 and 25.6 μmol·h-1, which are 8-fold and 13-fold that of pristine g-C3N4, respectively. In detail, coupling Ni3Se4 and CoSe2 with g-C3N4 greatly improves the light absorbance density and extends the light response region. The photoluminescence intensity of the photoexcited Eosin Y dye in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is weaker than that in the presence of pure g-C3N4. On the other hand, the upper limit of the electron-transfer rate constants in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is greater than that in the presence of pure g-C3N4. Among the g-C3N4@Ni3Se4@FTO, g-C3N4@CoSe2@FTO, and g-C3N4@FTO electrodes, the g-C3N4@FTO electrode has the lowest photocurrent density and the highest electrochemical impedance, implying that the introduction of CoSe2 and Ni3Se4 onto the surface of g-C3N4 enhances the separation and transfer efficiency of photogenerated charge carriers. In other words, the formation of two star metals selenide based on g-C3N4 can efficiently inhibit the recombination of photogenerated charge carriers and accelerate photocatalytic water splitting to generate H2. Meanwhile, the right shift of the absorption band edge effectively reduces the transition threshold of the photoexcited electrons from the valence band to the conduction band. In addition, the more negative zeta potential for the g-C3N4@Ni3Se4 and g-C3N4@CoSe2 catalysts as compared with that for pure g-C3N4 leads to a notable enhancement in the adsorption of protons by the sample surface. Moreover, the results of density functional theory calculations indicate that the hydrogen adsorption energy of the N sites in g-C3N4 is -0.22 eV; further, the hydrogen atoms are preferentially adsorbed at the bridge site of two selenium atoms to form a Se―H―Se bond, and the adsorption energy is 1.53 eV. In-depth characterization has been carried out by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, transient photocurrent measurements, and Fourier transform infrared spectroscopy; the results of these experiments are in good agreement with one another.  相似文献   

15.
分别采用热解法和溶胶-凝胶-碳热还原法合成了石墨相氮化碳(g-C3N4)和纳米级碳化硅(β-SiC), 通过浸渍-热处理法将两者复合并通过浓盐酸质子化, 分别制备了g-C3N4/β-SiC和质子化g-C3N4/β-SiC(P-g-C3N4/β-SiC)复合光催化剂. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 高分辨透射电子显微镜(HRTEM)、 傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)、 紫外-可见漫反射光谱(UV-Vis-DRS)和光致发光光谱(PL)等对样品进行了表征. 结果表明, P-g-C3N4/β-SiC复合材料的比表面积增大, 光生电子-空穴对的复合几率降低, 光催化性能明显提高. 在光催化降解染料茜素红(ARS)研究中, 样品的可见光催化活性顺序为P-g-C3N4/β-SiC>g-C3N4/β-SiC>P-g-C3N4>g-C3N4>β-SiC. 其中P-g-C3N4/β-SiC在60 min内对ARS的降解效率高达99.9%, 符合准一阶动力学模型, 速率常数为0.0967 min -1, 且循环使用9次后, 光催化降解效率仍保持97.5%以上.  相似文献   

16.
Photocatalytic reduction of CO2 to hydrocarbon compounds is a promising method for addressing energy shortages and environmental pollution. Considerable efforts have been devoted to exploring valid strategies to enhance photocatalytic efficiency. Among various modification methods, the hybridization of different photocatalysts is effective for addressing the shortcomings of a single photocatalyst and enhancing its CO2 reduction performance. In addition, metal-free materials such as g-C3N4 and black phosphorus (BP) are attractive because of their unique structures and electronic properties. Many experimental results have verified the superior photocatalytic activity of a BP/g-C3N4 composite. However, theoretical understanding of the intrinsic mechanism of the activity enhancement is still lacking. Herein, the geometric structures, optical absorption, electronic properties, and CO2 reduction reaction processes of 2D/2D BP/g-C3N4 composite models are investigated using density functional theory calculations. The composite model consists of a monolayer of BP and a tri-s-triazine-based monolayer of g-C3N4. Based on the calculated work function, it is inferred that electrons transfer from g-C3N4 to BP owing to the higher Fermi level of g-C3N4 compared with that of BP. Furthermore, the charge density difference suggests the formation of a built-in electric field at the interface, which is conducive to the separation of photogenerated electron-hole pairs. The optical absorption coefficient demonstrates that the light absorption of the composite is significantly higher than that of its single-component counterpart. Integrated analysis of the band edge potential and interfacial electronic interaction indicates that the migration of photogenerated charge carriers in the BP/g-C3N4 hybrid follows the S-scheme photocatalytic mechanism. Under visible-light irradiation, the photogenerated electrons on BP recombine with the photogenerated holes on g-C3N4, leaving photogenerated electrons and holes in the conduction band of g-C3N4 and the valence band of BP, respectively. Compared with pristine g-C3N4, this S-scheme heterojunction allows efficient separation of photogenerated charge carriers while effectively preserving strong redox abilities. Additionally, the possible reaction path for CO2 reduction on g-C3N4 and BP/g-C3N4 is discussed by computing the free energy of each step. It was found that CO2 reduction on the composite occurs most readily on the g-C3N4 side. The reaction path on the composite is different from that on g-C3N4. The heterojunction reduces the maximum energy barrier for CO2 reduction from 1.48 to 1.22 eV, following the optimal reaction path. Consequently, the BP/g-C3N4 heterojunction is theoretically proven to be an excellent CO2 reduction photocatalyst. This work is helpful for understanding the effect of BP modification on the photocatalytic activity of g-C3N4. It also provides a theoretical basis for the design of other high-performance CO2 reduction photocatalysts.   相似文献   

17.
Since the pioneering work on polychlorinated biphenyl photodegradation by Carey in 1976, photocatalytic technology has emerged as a promising and sustainable strategy to overcome the significant challenges posed by energy crisis and environmental pollution. In photocatalysis, sunlight, which is an inexhaustible source of energy, is utilized to generate strongly active species on the surface of the photocatalyst for triggering photo-redox reactions toward the successful removal of environmental pollutants, or for water splitting. The photocatalytic performance is related to the photoabsorption, photoinduced carrier separation, and redox ability of the semiconductor employed as the photocatalyst. Apart from traditional and noble metal oxide semiconductors such as P25, bismuth-based compounds, and Pt-based compounds, 2D g-C3N4 is now identified to have enormous potential in photocatalysis owing to the special π-π conjugated bond in its structure. However, some inherent drawbacks of the conventional g-C3N4, including the insufficient visible-light absorption ability, fast recombination of photogenerated electron-hole pairs, and low quantum efficiency, decrease its photocatalytic activity and limit its application. To date, various strategies such as heterojunction fabrication, special morphology design, and element doping have been adopted to tune the physicochemical properties of g-C3N4. Recent studies have highlighted the potential of defect engineering for boosting the light harvesting, charge separation, and adsorption efficiency of g-C3N4 by tailoring the local surface microstructure, electronic structure, and carrier concentration. In this review, we summarize cutting-edge achievements related to g-C3N4 modified with classified non-external-caused defects (carbon vacancies, nitrogen vacancies, etc.) and external-caused defects (doping and functionalization) for optimizing the photocatalytic performance in water splitting, removal of contaminants in the gas phase and wastewater, nitrogen fixation, etc. The distinctive roles of various defects in the g-C3N4 skeleton in the photocatalytic process are also summarized. Moreover, the practical application of 2D g-C3N4 in air pollution control is highlighted. Finally, the ongoing challenges and perspectives of defective g-C3N4 are presented. The overarching aim of this article is to provide a useful scaffold for future research and application studies on defect-modulated g-C3N4.   相似文献   

18.
通过水热和原位还原法制备了一种新型Z型异质结三元复合材料Au NPs/g-C3N4/BiOBr,并通过X射线衍射、X射线光电子能谱、透射电子显微镜、紫外-可见漫反射光谱和光致发光发射光谱等技术对材料的形貌、结构进行了表征。通过在可见光下降解苯酚来评价光催化剂的活性。研究发现,Au NPs/g-C3N4/BiOBr显示出增强的光催化活性,对苯酚的降解能力是g-C3N4的3倍,是BiOBr的2.5倍。这可归因于三元复合材料的窄带隙(2.10eV)、Z型机理对光生电子-空穴对的有效分离和Au纳米颗粒的表面等离子体共振效应(SPR)。  相似文献   

19.
以尿素作为原料, 采用熔盐辅助热聚合法在KCl-NaCl-BaCl2体系中制备了带隙可调的g-C3N4纳米结构. 采用X射线衍射仪、 扫描电子显微镜、 X射线光电子能谱仪、 紫外-可见漫反射光谱仪及荧光光谱仪对产物的结构、 形貌、 成分及光学性能进行了表征. 对g-C3N4纳米结构可见光条件下的光催化制氢性能进行了测试, 研究了不同的尿素/熔盐比对其光催化性能的影响. 结果表明, 熔盐辅助热聚合法制备的g-C3N4 纳米结构吸收光谱出现明显宽化, 吸收边由普通热聚合法制备g-C3N4的约450 nm红移至约500 nm左右. 同时光生载流子复合几率明显降低, 从而有效提升其光催化制氢性能. 最优化的g-C3N4(60)样品析氢速率达到12301.1 μmol?g?1?h?1, 为普通热聚合法制备g-C3N4析氢速率的4倍.  相似文献   

20.
Conventional titanium dioxide(TiO2) photocatalyst could absorb only ultraviolet light due to its wide bandgap. In this paper, black TiO2 with narrow bandgap was prepared by introducing oxygen vacancies. Meanwhile, nitrogen(N) and sulfur(S) elements were doped to further broaden the visible light response range of TiO2(NS-BT), and then heterostructured N,S-doped black TiO2/g-C3N4(CN/NS-BT) was successfully constructed by easily accessible route. The formation of CN/NS-BT heterojunction structure increased the generation and separation efficiency of photogenerated electron-hole pairs, as well as accelerated the transfer rate of the carriers. The as-prepared CN/NS-BT exhibited excellent photocatalytic performance towards the degradation of Rhodamine B(RhB) under visible light irradiation with satisfactory stability. The apparent reaction rate constant of CN/NS-BT(0.0079) was 15.8-fold higher than that of commercial P25(0.0005). The structure, morphology, chemical composition and optical properties of the as-prepared CN/NS-BT were characterized by various analytical methods, and possible photocatalytic enhancement mechanism was proposed. Overall, CN/NS-BT composites look promising as photocatalytic material for future environmental treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号