首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
石油、天然气和煤等化石能源的转化利用不可避免排放大量的CO_2,造成一系列生态和环境问题.CO_2电化学还原可以在温和反应条件下将CO_2转化为CO或甲酸等,近年来受到研究者广泛关注,但因CO_2具有很稳定的化学结构,CO_2电化学还原要求催化剂具有高的活性,选择性和稳定性.贵金属如金和钯可以有效地将CO_2转化为相应的燃料如CO和甲酸等,但贵金属昂贵的价格限制了其大规模应用,所以迫使人们寻找非贵金属催化剂来替代它们.铟及其合金被应用于CO_2电化学还原生成甲酸,但在低过电位下,这些催化剂的电流密度和选择性都不理想.铜基催化剂也能催化CO_2电化学还原生成甲酸,但在短时间内稳定性较差.因此,需要进一步提高In和Cu催化剂上CO_2电化学还原的电流密度和稳定性.一种可能的解决方案是构建Cu-In双金属催化剂,通过两者的协同作用,有望提升在低过电位下CO_2电化学还原生成甲酸的电流密度和稳定性.在本工作中,我们通过氢气模板法制备出具有树枝状结构的Cu,然后在其表面均匀电沉积金属In.通过两步电沉积法制备出一种具有树枝状结构的Cu-In二元金属催化剂.控制电沉积In的时长分别为1.5,7.5,15,30和60 min.根据SEM及EDX元素分布图谱可知,随着电沉积In时间的增加,In在Cu表面的覆盖率逐渐增高.我们还研究了In的电沉积时间与其电化学活性表面积(ESA)之间的关系.结果表明,In的电沉积时间与其电化学活性表面积成正比,且当电沉积时间达到30 min时,电极具有最大的电化学活性表面积.具有树枝状结构的Cu-In-30催化剂ESA数值为8.7 cm~2,而不具备树枝状结构的In-30催化剂的ESA数值仅为2.4 cm~2.在-0.65 V vs.RHE至-1.05 V vs.RHE电位窗口中,与其它催化剂相比,Cu-In-30催化剂上CO_2电化学还原生成甲酸的法拉第效率最高可达87.4%.树枝状结构的Cu-In-30催化剂由于具有开放的三维结构,所以能够暴露出更多的活性位,从而提高了催化剂的电化学性能.在-0.85 V vs.RHE电位下,甲酸分电流密度可达42.0 m A cm~(-2),且具有较高的电化学稳定性(12 h).而不具有树枝状结构的In-30催化剂生成甲酸的法拉第效率为57.0%,且甲酸分电流密度为4.6 m A cm~(-2).  相似文献   

2.
汽车尾气净化催化剂中钯含量的测定   总被引:4,自引:0,他引:4  
贵金属钯是汽车尾气净化催化剂(以下简称汽车催化剂)的活性元素之一。为了综合平衡地利用贵金属资源以及降低催化剂成本,用钯替代铂、铑活性成分,甚至采用全钯催化剂一直是国内外汽车催化剂的研究热点[1]。钯属稀有资源必须回收利用,回收时必须对钯准确测定[2]。目前的分析方法[3-6]多集中于分析测试仪器的利用和分光光度法显色体系的研究,对于块状结构的汽车催化剂的溶样方法的研究,是选择浸出活性组分回收汽车催化剂中铂族金属元素的关键[7]。PdO难溶[8],用甲酸对催化剂中被氧化的钯进行还原预处理,利用分光光度法测定选择性浸出钯。…  相似文献   

3.
邹璐  邓超  高颖  邬冰 《燃料化学学报》2015,43(4):507-512
制备了导电高分子聚苯胺与活性炭的复合载体(PAnC),用PAnC作为载体制备的钯催化剂性能优于单独活性炭作为载体制备的催化剂。此外掺杂十二烷基磺酸钠制备的聚苯胺碳载体(PAnC-S)具有比PAnC更低的电荷传递电阻,10~25 nm的介孔数量明显增加,比表面积增大到94.9 m2/g。PAnC-S与PAnC粒径均匀,粒径均在30 nm左右。以PAnC-S和 PAnC为载体制备的钯催化剂比活性炭作载体制备的钯催化剂具有更大的电化学比表面积,分别为84.7和62.6 m2/g。对甲酸的氧化具有更高的电化学活性和稳定性。  相似文献   

4.
分别在酸性和碱性溶液中, 结合旋转圆盘电极技术和电化学石英晶体微天平技术原位考察了钯铁合金催化剂对氧还原反应催化活性的稳定性. 发现在酸性溶液中, 钯铁合金催化剂对氧还原反应的催化活性不稳定, 原因是钯铁合金催化剂在酸性溶液中发生电化学/化学溶解; 在碱性溶液中, 覆盖在电极表面的钯铁合金催化剂的质量及电化学活性面积在电化学扫描过程中不发生明显变化, 保持对氧还原反应的催化活性, 证明钯铁合金催化剂在碱性介质中非常稳定.  相似文献   

5.
分别以葡萄糖、蔗糖、淀粉为碳源,采用水热法制备碳微球;再通过还原法把金属钯负载在碳微球上,制成三种不同的碳球/钯核壳结构电催化剂。采用XRD、SEM、IR对样品的成分、结构和形貌进行分析表征;并将样品制成电极,测试它们的电化学活性。研究结果表明当以淀粉为碳源时,所得碳微球表面羟基官能团丰富,金属钯在该类碳微球上有更好的负载效果,对应的碳球/钯核壳结构电催化剂也表现出更好的电化学活性。对比三类核壳结构电极材料对乙醇和乙二醇的电化学氧化活性表明,三种电极材料对氧化乙二醇有更好的催化活性。  相似文献   

6.
采用喷雾干燥法和焙烧处理制备中空介孔三氧化钨微球(HMTTS),在其表面进一步负载活性成分Pd,得到纳米Pd/HMTTS复合催化剂.采用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等对催化剂的形貌和晶型结构进行了表征.结果表明,Pd纳米粒子为面心立方晶体结构,均匀地分布在HMTTS表面.采用循环伏安和计时电流法研究了在酸性溶液中Pd/HMTTS催化剂对甲酸的电催化氧化性能,结果表明Pd/HMTTS催化剂比普通的三氧化钨载钯催化剂(Pd/WO3)对甲酸呈现出更高的电催化氧化活性和稳定性.HMTTS独特的中空介孔结构和表面特性以及氢溢流效应有利于甲酸在钯表面的直接脱氢氧化过程的发生.  相似文献   

7.
表面结构控制和表面异种金属修饰是调控催化剂反应性的重要方法。因此,我们结合高指数晶面结构的高反应性与表面修饰异种金属,合成具有{730}高指数晶面的钯二十四面体纳米晶,并通过循环伏安扫描电沉积法得到Ru修饰的钯二十四面体纳米晶。电化学测试结果表明,低的Ru覆盖度(θ_(Ru)=0.08)可显著提高对碱性介质中甲醇电氧化的催化性能。电化学原位红外光谱结果表明,少量Ru的修饰没有减少CO的生成,而是促进了低电位下甲醇氧化成甲酸根。  相似文献   

8.
本文采用"一锅法"将氧化石墨烯(GO)、炭黑(C)和钯离子用NaBH4共还原,制备了石墨烯-炭黑二元载体(Gr-C)负载的钯催化剂(20%Pd/Gr-C),用于催化甲酸的电氧化反应.电化学测试结果表明,前驱体GO和C的质量比为3:7的Pd/Gr_(0.3)C_(0.7)催化剂催化活性最好,它的峰电流密度(102.14 mA mgPd~(-1))约为Pd/C催化剂(34.40 mA mgPd~(-1))的3倍,为钯/石墨烯催化剂(Pd/Gr,38.50 mA mgPd~(-1))的2.6倍.甲酸在Pd/Gr_(0.3)C_(0.7)催化剂电极直接氧化时的峰电位比Pd/C催化剂的峰电位负移约120mV,比Pd/Gr催化剂的峰电位负移约70 mV.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、电感耦合等离子发射光谱(ICP-AES)等手段对催化剂进行了表征.从SEM图像可以观察到,球形的炭黑团簇聚集在具有褶皱的石墨烯面上,形成了炭黑团簇/石墨烯三维立体结构,有效地抑制了相邻石墨烯层在范德华力作用下的吸引聚集和堆叠造成的石墨烯表面积减小,减小了单层石墨烯叠合成为多层石墨所造成的导电性损失,避免了相邻石墨烯片叠合形成封闭空间,有助于反应物和产物分子的运动.载体的三维结构使反应物分子更容易到达钯纳米粒子,有利于催化性能的提高.XPS结果也证实了二元Gr-C载体对Pd催化的促进作用.Pd/Gr_(0.3)C_(0.7)催化剂的Pd 3d5/2峰发生了右移,表明Pd 3d电子结合能正移,Pd 3d电子云密度降低.具有较低的3d电子云密度的Pd不易与甲酸氧化过程中吸附的中间体(COOH)ads结合,钯催化剂上(COOH)ads表面覆盖率降低,从而使甲酸更容易直接脱氢氧化生成CO_2,有利于甲酸通过直接途径进行电化学氧化.与Pd/C,Pd/Gr相比,Pd/Gr_(0.3)C_(0.7)催化剂对甲酸电氧化有最好的催化活性.Pd/Gr_(0.3)C_(0.7)催化剂优异的催化活性可归因于其内在的三维纳米结构:炭黑团簇有效地抑制了石墨烯纳米片的聚集,保持了其大的比表面积和高导电性,促进了反应物和产物分子的运动.此外,Pd纳米粒子与二元载体之间的强相互作用降低了Pd的3d电子云密度,使甲酸氧化主要经直接途径进行.本文证实了钯金属和石墨烯-炭黑二元载体之间的强相互作用,提供了简单和高性价比的方法以提高钯基催化剂的活性,有利于工业化的应用  相似文献   

9.
本文采用"一锅法"将氧化石墨烯(GO)、炭黑(C)和钯离子用NaBH4共还原,制备了石墨烯-炭黑二元载体(Gr-C)负载的钯催化剂(20%Pd/Gr-C),用于催化甲酸的电氧化反应.电化学测试结果表明,前驱体GO和C的质量比为3:7的Pd/Gr0.3C0.7催化剂催化活性最好,它的峰电流密度(102.14 mA mgPd-1)约为Pd/C催化剂(34.40 mA mgPd-1)的3倍,为钯/石墨烯催化剂(Pd/Gr,38.50 mA mgPd-1)的2.6倍.甲酸在Pd/Gr0.3C0.7催化剂电极直接氧化时的峰电位比Pd/C催化剂的峰电位负移约120 mV,比Pd/Gr催化剂的峰电位负移约70 mV.采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、电感耦合等离子发射光谱(ICP-AES)等手段对催化剂进行了表征.从SEM图像可以观察到,球形的炭黑团簇聚集在具有褶皱的石墨烯面上,形成了炭黑团簇/石墨烯三维立体结构,有效地抑制了相邻石墨烯层在范德华力作用下的吸引聚集和堆叠造成的石墨烯表面积减小,减小了单层石墨烯叠合成为多层石墨所造成的导电性损失,避免了相邻石墨烯片叠合形成封闭空间,有助于反应物和产物分子的运动.载体的三维结构使反应物分子更容易到达钯纳米粒子,有利于催化性能的提高.XPS结果也证实了二元Gr-C载体对Pd催化的促进作用.Pd/Gr0.3C0.7催化剂的Pd 3d5/2峰发生了右移,表明Pd 3d电子结合能正移,Pd 3d电子云密度降低.具有较低的3d电子云密度的Pd不易与甲酸氧化过程中吸附的中间体(COOH)ads结合,钯催化剂上(COOH)ads表面覆盖率降低,从而使甲酸更容易直接脱氢氧化生成CO2,有利于甲酸通过直接途径进行电化学氧化.与Pd/C,Pd/Gr相比,Pd/Gr0.3C0.7催化剂对甲酸电氧化有最好的催化活性.Pd/Gr0.3C0.7催化剂优异的催化活性可归因于其内在的三维纳米结构:炭黑团簇有效地抑制了石墨烯纳米片的聚集,保持了其大的比表面积和高导电性,促进了反应物和产物分子的运动.此外,Pd纳米粒子与二元载体之间的强相互作用降低了Pd的3d电子云密度,使甲酸氧化主要经直接途径进行.本文证实了钯金属和石墨烯-炭黑二元载体之间的强相互作用,提供了简单和高性价比的方法以提高钯基催化剂的活性,有利于工业化的应用.  相似文献   

10.
电催化甲酸氧化中钯微粒与聚苯胺的相互作用   总被引:6,自引:0,他引:6  
采用电化学、XPS和拉曼光谱研究钯微粒修饰聚苯胺(PAN(Pd)电极对甲酸氧化的电催化行为。由于钯与PAN的相互作用,钯微粒在所研究的电位区间可稳定地固定于PAN中,且甲酸在钯上的氧化明显地抑制PAN的氧化降解,使PAN(Pd)电极电催化甲酸氧化反应具有高的稳定性和活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号