首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
The adlayers formed by a series of aza- and/or oxo-bridged calix[2]arene[2]triazines on Au(111) surfaces were investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. 1,3-Alternate configurations of these molecules are preserved on gold surfaces as in their three-dimensional crystals. STM images show that the cavity sizes of these molecules are finely tuned by substituting the bridging nitrogen atom with oxygen atoms, which change the strengths and densities of the intermolecular hydrogen bonds. Hydrogen bond interaction influences the molecular orientation and conformation in the adlayers, and it plays a key role in the formation of these two-dimensional supramolecular architectures. Coadsorption of calix[2]arene[2]triazine with 1,3,5-tris(5-carboxyamyloxy)benzene (TCAB) intervenes with the intermolecular hydrogen bond formations among the calix[2]arene[2]triazine molecules and consequently causes a conformational transition of the calixarene molecules from rhombic to square. These results demonstrate the role of hydrogen bonds in molecular assembly formations.  相似文献   

12.
Adsorption structures formed from a class of planar organic molecules on the Au(111) surface under ultrahigh vacuum conditions have been characterized using scanning tunneling microscopy (STM). The molecules have different geometries, linear, bent, or three-spoke, but all consist of a conjugated aromatic backbone formed from three or four benzene rings connected by ethynylene spokes and functionalized at all ends with an aldehyde, a hydroxyl, and a bulky tert-butyl group. Upon adsorption, the molecules adopt different surface conformations some of which are chiral. For the majority of the observed adsorption structures, chirality is expressed also in the molecular tiling pattern, and the two levels of chirality display a high degree of correlation. The formation and chiral ordering of the self-assembled structures are shown to result from dynamic interchanges between a diffusing lattice gas and the nucleated islands, as well as from a chiral switching process in which molecules alter their conformation by an intramolecular rotation around a molecular spoke, enabling them to accommodate to the tiling pattern of the surrounding molecular structures. The kinetics of the conformational switching is investigated from time-resolved, variable temperature STM, showing the process to involve an activation energy of approximately 0.3 eV depending on the local molecular environment. The molecule-molecule interactions appear primarily to be of van der Waals character, despite the investigated compounds having functional moieties capable of forming intermolecular hydrogen bonds.  相似文献   

13.
We have addressed here electron transfer (ET) of Pyrococcus furiosus ferredoxin (PfFd, 7.5 kDa) in both homogeneous solution using edge plane graphite (EPG) electrodes and in the adsorbed state by electrochemistry on surface-modified single-crystal Au111 electrodes, This has been supported by surface microscopic structures of PfFd monolayers, as revealed by scanning tunneling microscopy under potential control (in situ STM). Direct ET between PfFd in phosphate buffer solution, pH 7.9, and EPG electrodes is observed in the presence of promoters. Neomycin gives rise to a pair of redox peaks with a formal potential of ca -430 mV (vs SCE), corresponding to [3Fe-4S]1+/0. The presence of an additional promoter, which can be propionic acid, alanine, or cysteine, induces a second pair of redox peaks at approximately -900 mV (vs SCE) arising from [3Fe-4S]0/1-. A robust neomycin-PfFd complex was detected by mass spectrometry. The results clearly favor an ET mechanism in which the promoting effect of small organic molecules is through formation of promoter-protein complexes. The interaction of PfFd with small organic molecules in homogeneous solution offers clues to confine the protein on the electrode surface modified by the same functional group monolayer and to address diffusionless direct electrochemistry, as well as surface microstructures of the protein monolayer. PfFd molecules were found to assemble on either mercaptopropionic acid (MPA) or cysteine-modified Au111 surfaces in stable monolayers or submonolayers. Highly ordered (2 radical 3 x 5)R30 degrees cluster structures with six MPA molecules in each cluster were found by in situ STM. Individual PfFd molecules on the MPA layer are well resolved by in situ STM. Under Ar protection reversible cyclic voltammograms were obtained on PfFd-MPA/Au111 and PfFd-cysteine/Au111 electrodes with redox potentials of -220 and -201 mV (vs SCE), respectively, corresponding to the [Fe3S4]1+/0 couple. These values are shifted positively by 200 mV relative to homogeneous solution due to interactions between the promoting layers and the protein molecules. Possible mechanisms for such interactions and their ET patterns are discussed.  相似文献   

14.
In-situ scanning tunneling microscopy (STM) coupled with cyclic voltammetry was used to examine the adsorption of carbon monoxide (CO) molecules on an ordered Au(111) electrode in 0.1 M HClO4. Molecular resolution STM revealed the formation of several commensurate CO adlattices, but the (9 x radical 3) structure eventually prevailed with time. The CO adlayer was completely electrooxidized to CO2 at 0.9 V versus RHE in CO-free 0.1 M HClO(4), as indicated by a broad and irreversible anodic peak which appeared at this potential in a positive potential sweep from 0.05 to 1.6 V. A maximal coverage of 0.3 was estimated for CO admolecules from the amount of charge involved in this feature. Real-time in-situ STM imaging allowed direct visualization of the adsorption process of CO on Au(111) at 0.1 V, showing the lifting of (radical 3 x 22) reconstruction of Au(111) and the formation of ordered CO adlattices. The (9 x radical 3) structure observed in CO-saturated perchloric acid has a coverage of 0.28, which is approximately equal to that determined from coulometry. Switching the potential from 0.1 to -0.1 V restored the reconstructed Au(111) with no change in the (9 x radical 3)-CO adlattice. However, the reconstructed Au(111) featured a pairwise corrugation pattern with two nearest pairs separated by 74 +/- 1 A, corresponding to a 14% increase from the ideal value of 65.6 A known for the ( radical 3 x 22) reconstruction. Molecular resolution STM further revealed that protrusions resulting from CO admolecules in the (9 x radical 3) structure exhibited distinctly different corrugation heights, suggesting that the CO molecules resided at different sites on Au(111). This ordered structure predominated in the potential range between 0.1 and 0.7 V; however, it was converted into new structures of (7 x radical 7) and ( radical 43 x 2 radical 13) on the unreconstructed Au(111) when the potential was held at 0.8 V for ca. 60 min. The coverage of CO adlayer decreased accordingly from 0.28 to 0.13 before it was completely removed from the Au(111) surface at more positive potentials.  相似文献   

15.
The adsorption of 4-mercaptopyridine (4MPy) molecules on reconstructed Au(111) is investigated by Scanning Tunneling Microscopy (STM) and Spectroscopy (STS) at low temperature and under ultra-high vacuum (UHV) conditions. As made visible by STM, at low coverage (<10%) 4MPy adsorbs preferentially at elbow sites of the Herringbone reconstruction and at step edges of the Au(111). Increasing coverage (but still <30%) results in formation of molecular chains followed, at even higher coverage, by a 3-dimensional growth. Detailed analysis of z-V spectroscopy (ramping the tunneling bias V while keeping the tunneling current constant) provides information on the bias dependent apparent height of a single 4MPy/Au(111) as well as on the local density of states (LDOS) of single and chain 4MPy molecules in comparison to the bare Au(111) surface revealing a significant shift of the lowest unoccupied molecular orbital (LUMO) towards lower energy for molecules within chains. Additionally, the data provide no evidence that for these samples prepared in UHV the adsorption of 4MPy on Au(111) requires mediating Au adatoms. Also, clear indications are given that the adsorption does not induce a strong reduction of the Au DOS close to its Fermi energy. Finally, in context of the apparent STM height of 4MPy molecules, the behavior of the differential barrier height Φ(diff)(V) = (?(z)?(V)I/?(V)I)(2) on bare Au(111) and 4MPy/Au(111) is analyzed and the corresponding experimental values are applied to recover the LDOS of the molecule for unoccupied states according to a previously published numerical recipe [B. Koslowski, H. Pfeifer and P. Ziemann, Phys. Rev. B, 2009, 80, 165419 and M. Ziegler, N. Néel, A. Sperl, J. Kr?ger, and R. Berndt, Phys. Rev. B, 2009, 80, 125402]. In this way, one obtains a spectrum comprising a constant DOS of the Shockley-like surface state of Au(111) and a Lorentzian line attributed to the LUMO of 4MPy.  相似文献   

16.
A detailed study on the time-dependent organization of a decanethiol self-assembled monolayer (SAM) at a designed solution concentration onto a Au(111) surface has been performed with scanning tunneling microscopy (STM). The SAMs were prepared by immersing Au(111) into an ethanol solution containing 1 microM decanethiol with different immersion times. STM images revealed the formation process and adlayer structure of the SAMs. It was found that the molecules self-organized into adlayers from random separation to a well-defined structure. From 10 s, small domains with ordered molecular organization appeared, although random molecules could be observed on Au(111) at the very initial stage. At 30 s, the SAM consisted of uniform short stripes. Each stripe consisted of sets of decanethiol mainly containing eight molecules. With the immersion time increasing, the length of the stripes increased. At 5 min, the alkyl chains overlapped each other between the adjacent stripes, indicating the start of a stacked process. After immersing Au(111) in decanethiol solution for 3 days, a densely packed adlayer with a (radical 3 x radical 3)R30 degrees structure was observed. The formation process and structure of decanethiol SAMs are well related to sample preparation conditions. The wettability of the decanethiolate SAM-modified Au(111) surface was also investigated.  相似文献   

17.
A detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of [111] oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 x 2) superlattice structure is observed as a (3 x 2) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au[111] lattice and aligned along its [112] lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of approximately 20 nm.  相似文献   

18.
We developed a new molecular beam deposition apparatus using a spray-jet technique for high-quality thin film preparation of nonsublimable molecules. The apparatus was used to deposit chloro[tri-tert-butyl-subphthalocyaninato]boron(III) (TBSubPc) molecules on an Au(111) surface for analysis by low-temperature scanning tunneling microscopy (STM). Highly resolved images, in which tert-butyl groups in a TBSubPc molecule were clearly identifiable, were obtained. The image quality and the resolution of these images compared favorably well to STM images taken on reference samples which were sublimed onto Au (111) from a heated crucible.  相似文献   

19.
We investigate the on‐surface [2+2] cycloaddition reaction of 2,3,6,7,10,11‐hexabromotriphenylene (HBTP) on Ag(111), Cu(111), Au(111), and Cu‐dosed Au(111) surfaces using STM and DFT simulation focusing on the organometallic intermediates. The fully debrominated HBTP molecules form an organo‐silver framework on Ag(111) and an organo‐copper framework on Cu(111), both incorporating multinuclear metal adatom clusters. The organo‐silver framework is converted into porous covalent networks via [2+2] cycloaddition above 240 °C. In contrast, the organo‐copper framework is very stable and does not undergo [2+2] cycloaddition even at 300 °C. On Au(111), no organo‐gold intermediate of [2+2] cycloaddition is observed. After loading Cu onto Au(111), the partially debrominated HBTP molecules bind to Cu adatom dimers to form multinuclear organo‐copper complexes at 100 °C which undergo [2+2] cycloaddition at 140 °C. This study shows that the choice of surface can direct the reaction pathway.  相似文献   

20.
The adsorption and thermal stability of 2-octylthieno[3,4-b]thiophene (OTTP) on the Au(111) surfaces have been studied using scanning tunneling microscopy (STM), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). UHV-STM studies revealed that the vapor-deposited OTTP on Au(111) generated disordered adlayers with monolayer thickness even at saturation coverage. XPS and TPD studies indicated that OTTP molecules on Au(111) are stable up to 450K and further heating of the sample resulted in thermal decomposition to produce H(2) and H(2)S via C-S bond scission in the thieno-thiophene rings. Dehydrogenation continues to occur above 600K and the molecules were ultimately transformed to carbon clusters at 900K. Highly resolved air-STM images showed that OTTP adlayers on Au(111) prepared from solution are composed of a well-ordered and low-coverage phase where the molecules lie flat on the surface, which can be assigned as a (9×2√33)R5° structure. Finally, based on analysis of STM, TPD, and XPS results, we propose a thermal decomposition mechanism of OTTP on Au(111) as a function of annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号