首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
近年来,钠离子电池由于资源丰富、价格低廉等特点,逐渐成为储能领域的研究热点。然而,钠离子具有较大的离子半径和较慢的动力学速率,成为制约储钠材料发展的主要因素,而发展高性能的嵌钠正极材料是提高钠离子电池比能量和推进其应用的关键。本文详细综述了目前钠离子电池研究的正极材料体系,包括过渡金属氧化物、聚阴离子类材料、普鲁士蓝类化合物、有机分子和聚合物、非晶材料等,并结合这几年我们课题组在正极方面的研究工作,探讨了材料的结构和电化学性能的关系,分析了提高正极材料可逆容量、电压、结构稳定性的可能途径,为钠离子电池电极材料的发展提供参考。  相似文献   

2.
室温钠离子电池由于原料丰富,分布广泛,价格低廉,引起了人们的研究兴趣。然而,由于钠离子相对于锂离子较重且半径较大,这会限制钠离子在电极材料中的可逆脱嵌过程,从而影响电池的电化学性能。因此研发先进的电极材料成为钠离子电池实用化的关键。本文中我们主要介绍了几种典型的钠离子电池电极材料,并对其最新的研究进展进行了简要综述,将为钠离子电池新型电极材料的研究提供基础。  相似文献   

3.
钠离子电池负极材料   总被引:1,自引:0,他引:1  
钠离子电池具有钠资源丰富和成本低廉等特点,吸引了国内外研究者的广泛关注,被认为是今后在规模储能领域可能替代锂离子电池的最佳候选。近几年钠离子电池的研究相继取得了重要进展,研究体系不断丰富。本文对钠离子电池负极材料的研究现状进行了详细的综述,重点介绍了碳基材料、合金材料、非金属单质、金属氧化物以及有机化合物等嵌钠性能及可能的嵌钠机理。探讨了这些材料目前所面临的主要问题及可能的解决策略,并对钠离子电池今后的研究方向和应用前景进行了展望。  相似文献   

4.
室温钠离子电池由于原料丰富,分布广泛,价格低廉,引起了人们的研究兴趣。然而,由于钠离子相对于锂离子较重且半径较大,这会限制钠离子在电极材料中的可逆脱嵌过程,从而影响电池的电化学性能。因此研发先进的电极材料成为钠离子电池实用化的关键。本文中我们主要介绍了几种典型的钠离子电池电极材料,并对其最新的研究进展进行了简要综述,将为钠离子电池新型电极材料的研究提供基础。  相似文献   

5.
相较于目前主流的锂离子电池,钠离子电池成本相对较低,因而有望在未来大规模储能系统中获得重要应用,然而其实用化进程仍受制于缺少合适的正负极材料,特别是性能优异且实用化的负极材料.钠离子电池与锂离子电池具有相似的工作原理,但钠离子和锂离子在碳负极材料中的储存行为却有着很大的不同.总体而言,碳材料仍是目前最有望促进钠离子电池实用化的关键负极材料.本文系统总结并分析了目前已有碳材料中钠离子的储存机制,对负极材料的设计思路和研究进展进行了概述,着重阐述了商用化碳分子筛在钠离子电池中的实用化前景.最后,本文对钠离子电池中碳负极材料的未来发展方向进行了展望.  相似文献   

6.
钠离子电池由于具有能量密度高和钠资源丰富等优点而被认为是锂离子电池最有希望的替代品之一。合金型材料锑的理论容量高,氧化还原电位合适,是近年来钠离子电池负极材料的研究热点之一。本文主要介绍了锑单质、锑/碳复合材料、锑合金、锑的氧化物、锑的硫化物以及锑的其他复合物等锑基钠离子电池负极材料的研究现状。  相似文献   

7.
钠离子电池具有资源丰富和成本低等优势,在大规模储能领域受到广泛的关注.开发具有高比容量和长循环稳定性的电极材料是钠离子电池走向应用的关键.碳材料作为钠离子电池的负极材料,具有可调控性高与稳定性好等优势,具有应用潜力.目前,研究较为广泛的碳材料主要包括石墨、无定形碳、杂原子掺杂碳、生物质合成碳,但这些碳负极材料存在着钠-...  相似文献   

8.
实现钠离子电池等储能设备的大规模应用对于能源的可持续发展以及完成“碳达峰碳中和”目标具有重要意义.开发高性能的负极材料可提升钠离子电池的能量密度和循环稳定性,是实现钠离子电池大规模应用的关键性因素.中空碳材料因其独特的结构而具有优异的倍率性能与循环稳定性,作为钠离子负极材料具有广阔的应用前景.本文从多角度出发,综合评述了中空碳材料的合成方法,以及其形貌、杂原子修饰策略与储钠性能之间的关系,并对其未来发展方向进行了展望.  相似文献   

9.
钠离子电池凭借钠资源丰富、价格低廉在大规模储能领域有着重要应用前景. 然而,钠离子相对锂离子较大的半径和质量限制了它在电极材料中的可逆脱嵌,导致其电化学性能不佳. 因此研发稳定、高效储钠的高比能电极材料是钠离子电池实用化的关键. 另外,进一步优化与电极材料相匹配的电解质来实现高安全、长寿命钠离子电池的构建,推动其商业化进程,也是迫切需要解决的问题. 本文主要对室温钠离子电池关键材料(包括正极、负极和电解质材料)的研究进展进行简要综述,并探讨了其面临的困难及可行的解决方案,为钠离子电池的发展提供一定参考依据.  相似文献   

10.
钠离子电池凭借着丰富的钠资源、低廉的物料成本以及良好的低温性能等优势,在储能领域与锂离子电池兼容互补.因此,加速推进钠离子电池商业化可以降低锂资源供应风险,确保新能源行业的长期健康发展.由于钠离子的半径较大,而负极材料作为其插层的宿主材料,对相关的设计和发展要求则更高.目前,硬炭材料是公认的钠离子电池负极材料的理想选择之一,也是最有可能实现大规模商业化生产的负极材料.本文以钠离子电池商业化的瓶颈作为切入点,对硬炭的材料特点、储钠机理及功能化设计策略进行了综合评述.最后,对这一技术领域的未来发展和挑战进行了展望.  相似文献   

11.
锑(Sb)具有高的理论比容量、较小的电极极化、合适的Na+脱嵌电位、价格低廉以及环境友好的优势,而成为一种具有较大应用前景的钠离子电池负极材料。但是,Sb基负极材料的一个重要挑战是在循环过程中高比容量伴随着大的体积变化,进而导致活性材料粉化,并从集流体上脱落,这大大限制了其在钠离子电池领域的大规模应用。因此,如何解决Sb基负极材料充放电过程中体积膨胀问题对于高性能的钠离子电池设计是至关重要的。本文详细综述和讨论了Sb基材料的结构-性能关系及其在钠离子电池中的应用,详细介绍了钠离子电池Sb基负极材料在氧化还原反应机理、形貌设计、结构-性能关系等方面的最新研究进展。本综述的主要目的是探讨影响Sb基负极材料性能的决定因素,从而提出有前途的改性策略,以提高其可逆容量和循环稳定性。最后,对Sb基钠离子电池负极材料的未来发展、面临的挑战和前景进行了展望。本文可为Sb负极材料的构建和优化提供具体的观点,阐明了Sb基负极材料未来的发展方向,从而促进钠离子电池的快速发展和实际应用。  相似文献   

12.
Na-ion batteries (SIBs) are promising alternatives for Li-ion batteries owing to the natural abundance of sodium resources and similar energy storage mechanisms. Although significant progress has been achieved in research on SIBs, there remain several challenges to be addressed. One of the major challenges in the construction of high-performance SIBs is the development of suitable anode materials with a large reversible capacity, high cycling stability, and good rate performance. Alloying anode materials mainly composed of elements from Groups IVA and VA, as well as their alloys, have attracted widespread attention because of their low working voltage, high cost-effectiveness, and large theoretical capacity. Alloying-type anode materials can be alloyed with metallic Na to achieve large reversible capacities, ensuring a high energy density. Antimony is a promising anode material for SIBs owing to its high theoretical specific capacity (660 mAh·g−1, corresponding to the full sodiation Na3Sb alloy), small degree of electrode polarization (~0.25 V), appropriate Na+ deintercalation potential (0.5–0.75 V), low price, and environmental friendliness. However, an important challenge for using Sb-based anode materials is that the high specific capacity is accompanied by large volume changes during cycling. Such changes lead to the pulverization of the active materials and their falling off from the collector, which significantly limit their large-scale application in the field of sodium-ion batteries. Therefore, mitigating the volume expansion issue of Sb-based anode materials in the charge-discharge process is very important for the design of high-performance SIBs. In recent years, researchers have attempted to address this issue by designing special structures to prepare various composites, and substantial progress has been achieved in improving the electrochemical performance of SIBs. In this review, the relationship between the structure and properties of Sb-based materials and their applications in SIBs are presented and discussed in detail. The latest research progress on using Sb-based anode materials for SIBs in redox reaction mechanisms along with their morphology design, structure-performance relationship, etc. have been reviewed. The main objective of this review is to explore the determining factors of the performance of Sb-based anode materials to propose suitable modification strategies for improving their reversible capacity and cycle stability. Finally, future developments, challenges, and prospects of Sb-based anode materials for SIBs are discussed. Despite several challenges, Sb-based materials are very promising anode materials for SIBs with alloying reaction mechanisms. To further improve the large-scale application of Sb-based anode materials, it is necessary to optimize the binder, electrode structure, and electrolyte composition. The combination of in-depth studies on the electrochemical reaction mechanisms and advanced characterization technologies is important for the development and construction of advanced Sb-based anode materials for SIBs. Finally, to achieve extensive large-scale applications, it is necessary to further explore environmentally friendly, low-cost, and controllable synthetic technologies to prepare high-performance Sb-based anode materials. This review provides specific perspectives for the construction and optimization of Sb-based anode materials and suggests scope for future work on Sb-based anode materials, thereby promoting the rapid development and practical application of SIBs.   相似文献   

13.
Metal selenides have drawn significant attention as promising anode materials for sodium-ion batteries(SIBs)owing to their high electronic conductivity and reversible capacity.Herein,hexagonal FeNi2Se4@C nanoflakes were synthesized via a facile one-step hydrothermal method.They deliver a reversible capacity of 480.7 mA·h/g at 500 mA/g and a high initial Coulombic efficiency of 87.8%.Furthermore,a discharge capacity of 444.8 mA·h/g can be achieved at 1000 mA/g after 180 cycles.The sodium storage mechanism of FeNi2Se4@C is uncovered.In the discharge process,Fe and Ni nanoparticles are generated and distributed in Na2Se matrix homogeneously.In the charge process,FeNi2Se4 phase is formed reversibly.The reversible phase conversion of FeNi2Se4@C during cycling is responsible for the excellent electrochemical performance and enables FeNi2Se4@C nanoflakes promising anode materials for SIBs.  相似文献   

14.
由于镁资源储量丰富、成本低廉, 且金属镁具有理论体积比容量高(3833 mAh/cm3), 沉积/溶解过程中不易形成枝晶等优点, 金属镁二次电池受到了研究者的广泛关注. 然而, Mg2+较大的极性导致其在多数锂离子电池正极材料中无法实现可逆脱嵌. 主流无机电极材料普遍存在只能在较小电流密度下循环、动力学缓慢、制备工艺复杂等问题. 相较而言, 有机电极材料具有理论比容量高、结构多样易调控、资源丰富、环境友好、受离子半径和电荷影响小等优点, 被认为是一种有潜力的电极材料. 综述了近年来用于非水系镁二次电池有机正极材料的研究进展, 讨论了不同类型有机正极材料的电荷存储机制及电化学性能, 并总结了其面临的挑战、解决策略以及未来的发展方向.  相似文献   

15.
牛津  张苏  牛越  宋怀河  陈晓红  周继升 《化学进展》2015,27(9):1275-1290
硅是目前已知比容量(4200 mAh ·g-1)最高的锂离子电池负极材料,但由于其巨大的体积效应(> 300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层(SEI),最终导致电化学性能的恶化。本文介绍了硅作为锂离子电池负极材料的储能及容量衰减机理,总结了通过硅材料的选择和结构设计来解决充放电过程中巨大体积效应的相关工作,并讨论了一些具有代表性的硅基复合材料的制备方法、电化学性能和相应机理,重点介绍了硅炭复合材料。另外,介绍了一些电极的处理方法和其提高硅基负极材料电化学性能的可能机理。最后,对硅基负极材料存在的问题进行了分析,并展望了其研究前景。  相似文献   

16.
Sodiumion batteries(SIBs)have attracted intensive attention as promising alternative to lithium-ionbatteries(LIBs)for large scale energy storage systems because of low cost of sodium,similar energy storage mechanism and the reasonable performance.However,it is still a great challenge to search and design a robust structure of anode materials with excellent cycling stability and high rate capability for SIBs.Herein,multilayer porous vanadium nitride(VN)microsheets are synthesized through a facile and scalable hydrothermal synthesis-nitrogenization strategy as an effective anode material for SIBs.The multilayer porous VN microsheets not only offer more active sites for fast Na+insertion/extraction process and short diffusion pathway,but also effectively buffer the volume change of anode due to more space in the multilayer porous structure.The large proportions of capacitive behavior imply that the Na+charge storage depends on the intercalation pseudocapacitive mechanism.The multilayer porous VN microsheets electrodes manifest excellent cycling stability and rate capability,delivering a discharge capacity of 156.1 mA·h/g at 200 mA/g after 100 cycles,and a discharge capacity of 111.9 mA·h/g at 1.0 A/g even after 2300 cycles with the Coulombic efficiency of nearly 100%.  相似文献   

17.
近年来,钠离子电池因其原材料丰富、资源成本低廉及安全环保等突出优点,在电化学规模储能领域和低速电动车中具有广阔的应用前景。聚阴离子型磷酸盐具有稳定的框架结构、合适的工作电压和快速的离子扩散路径等特征,是一类极具研究价值和应用前景的钠离子电池正极材料。但是,磷酸盐正极材料电子导电性差和比能量偏低等缺陷限制了其走向实际应用。研究工作者通过体相结构调控和微纳结构设计等手段进行改性研究,旨在提升磷酸盐正极材料的性能表现、推动钠离子储能体系的研究开发。本文综述了钠离子电池磷酸盐正极材料的最新进展,包括正磷酸盐、焦磷酸盐、氟磷酸盐和混合磷酸盐化合物,通过对磷酸盐材料的晶体结构、储钠机理和改性策略等方面的综述,揭示材料成分、结构与电化学性能之间的本征关系,为聚阴离子磷酸盐正极材料的持续改性和新型磷酸盐高压正极材料的探索开发提供指导。  相似文献   

18.
Alkali-ion batteries,including lithium-ion batteries(LIBs),sodium-ion batteries(NIBs)and potassium-ion batteries(KIBs),with alloy-based anodes exhibit huge potential in high energy density due to the natural abundance,high theoretical capacity as well as suitable operating voltages.However,the practical application is severely hindered by the huge volume variation based on the alloying mechanism and inferior conductivity,especially for red phosphorus(P)and silicon(Si)anodes,which induces poor rate capability and fast capacity decay.Herein,we will briefly review fundamental advantages and challenges of alloy-based anode materials.Then,effective modification strategies of alloy-based anode materials for boosting the performance would be emphasized and discussed.Finally,we will share our perspectives and some opportunities to obtain high-performance alloy-based anode materials for further application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号