首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
构筑和发展新型光功能树枝形聚合物是当前研究热点之一. 聚集诱导发光(Aggregation Induced Emission. AIE)类化合物以其高固态发光量子产率和广阔的应用前景引起研究者的极大关注, 分子内旋转受限降低了非辐射失活被认为是AIE高固态发光量子产率的主要原因. 在树枝形聚合物的外围修饰聚集诱导发光基团, 改善树枝形聚合物的发光性能, 通过外界环境改变树枝形聚合物分子构象, 实现对功能化树枝形聚合物体系发光的调控, 对扩展光功能树枝形聚合物在发光材料以及光捕获体系中的应用有重要意义.  相似文献   

2.
高分子因其优异的光学特性、良好的生物相容性和分子结构易于调控等优势,在光学诊疗领域表现出巨大应用潜力.然而,传统荧光分子的聚集导致荧光淬灭现象限制了其生物应用.聚集诱导发光(AIE)分子因其聚集态高效发光的优势而备受关注.本文从AIE高分子的构建出发,重点介绍了D-A型共轭聚合物的构建策略、构-效关系以及相对于小分子的性能和应用优势,并从生物成像、肿瘤诊疗和抗菌三个方面总结了AIE高分子在光学诊疗领域的最新研究进展.生物成像方面主要总结了NIR-Ⅱ区AIE高分子在深部组织高分辨率荧光成像中的应用;肿瘤诊疗方面主要介绍了AIE高分子在光动力治疗、光热治疗及联合治疗中的应用;以及介绍了AIE高分子在细菌感染光动力治疗中的应用.最后对AIE高分子在光学诊疗领域的未来发展前景进行了展望.  相似文献   

3.
环八四噻吩(COTh)是一类新发现的具有聚集诱导发光(AIE)特性的"马鞍型"分子.将发光基团芘引入到COTh分子骨架,设计合成了三种芘-环八四噻吩化合物,即单芘基环八四噻吩(Py-COTh)、四芘基环八四噻吩(4Py-COTh)以及四(三(三甲硅基)环八四噻吩基)芘(12TMS-4COTh-Py).考察了它们的吸收光谱、溶液态与冻结态(77K)下的荧光光谱以及聚集诱导发光(AIE)行为.研究发现COTh分子骨架上芘基数量的增加对分子的共轭效应影响较小,但其单分子与聚集态的发光行为显著增强且发光峰位红移;而芘基骨架上COTh基团数量的增加,增加了分子的共轭效应,造成了吸收光谱与荧光发射光谱峰位的大范围红移.这些光物理现象与分子结构存在着显著的构效关系.  相似文献   

4.
针对发光共轭聚合物稀溶液在干燥形成固体时的荧光淬灭问题, 通过高分子聚乙烯醇(PVA)的氢键网络调控水溶性共轭聚噻吩在溶液中的聚集行为和构象, 并采用不同的干燥方式实现了调控其固体光学性质的目的. 紫外-可见光吸收、荧光发射光谱测试表明, 在水溶液中PVA可以分散共轭聚合物链, 并增强其共平面性; 高温干燥后, 聚噻吩薄膜与无PVA添加的聚噻吩溶液的荧光性质相似; 而采用冷冻干燥法, 薄膜则保留了添加PVA后混合溶液的发光特性. 该结果表明, PVA对聚噻吩在溶液状态下的聚集/分子构象的调控行为随干燥方式的不同得到了不同程度的保留——高温加热干燥仅维持了PVA对聚噻吩的分散作用; 而冷冻干燥则完整保留了PVA与聚噻吩的分子间相互作用, 将溶液中分子的分散状态和构象同时固定. 本研究从干燥方式的角度为固态共轭聚合物聚集行为及发光性质的调控提供了新的策略.  相似文献   

5.
改变分子化学结构和调控分子结构聚集态行为从而影响或改变材料的化学和物理性质, 是开发新型高效有机光电功能材料的重要手段. 在共轭有机分子外缘引入烷基链一般是为了改进材料溶解性能, 但近来的一些研究表明, 烷基链长对一些共轭有机小分子固态聚集行为和光电性质具有重要影响, 烷基链扮演着显著调控材料光电性质的“功能基团”作用. 本文以聚集诱导发光(aggregation-induced emission, AIE)/聚集强化荧光(aggregation enhanced emission, AEE)发射共轭有机小分子为重点, 对近年来有关烷基链长对共轭有机分子聚集形态和光电性质影响的一些典型事例进行评述, 旨在使人们在进行共轭有机分子设计合成及其结构与性能关系研究中能够关注烷基链的因素, 使烷基链变化作为功能导向晶态共轭有机材料设计合成及其可控制备的一种手段.  相似文献   

6.
聚集诱导发光(AIE)现象的发现为解决传统有机荧光分子在高浓度和聚集形态下存在的荧光猝灭问题提供了最佳方案,并实现了在光电器件、化学传感、生物成像和靶向治疗等众多领域的广泛应用.随着对AIE 发光机理研究的不断深入,AIE 分子体系得到了极大的扩展.其中,一类具有给体-受体结构的AIE分子能够显著降低分子能隙,使发光分...  相似文献   

7.
具有聚集诱导发光性质的化合物   总被引:3,自引:0,他引:3  
具有聚集诱导发光(AIE)性质的有机化合物能够在聚集或固态条件下,通过改变分子组成、扭曲构象、刚性结构、堆积形态等调节荧光发射强度和波长,使其在OLED、化学/生物传感器等领域具有广阔应用前景。本文介绍了到目前有关AIE的研究进展。侧重总结了silole型、取代乙烯型(主要包括亚甲基环戊二烯型和DPDSB型)、腈取代二苯乙烯型、吡喃型、联苯型等小分子化合物和少数高分子的结构与AIE性质之间的关系,以及为解释AIE现象所提出的限制分子内的转动、避免非辐射去活、构象扭曲避免形成excimer、J-聚集态以及形成分子间的C-H/π键等理论。  相似文献   

8.
荧光分子在良溶剂中基本不发光或发光较弱,而在聚集状态下发光较强的现象,称为聚集诱导发光(Aggregation-induced emission,AIE)现象,这与传统的聚集导致猝灭(Aggregation-caused quenching,ACQ)现象相反。本文研究了多苯基吡咯衍生物的结构与发光性能的关系。通过比较吡咯衍生物的单晶结构和发光性质发现扭曲的结构可以限制共轭发光基团的分子内旋转(RIR),这是产生AIE现象的主要原因。羧酸化的吡咯衍生物可以对Al3+实时、选择性检测。由DMF诱导的三苯基吡咯羧酸衍生物(TPPA)重结晶在固态时出现可控的荧光发射,它具备很好的温度选择性,响应迅速,并可以循环利用,这证明TPPA可以作为一种热响应材料用于温度监控设备中。  相似文献   

9.
为了打破传统荧光材料的聚集荧光淬灭(ACQ)的应用限制,通过共价键连接聚集诱导发光(AIE)分子与平面ACQ分子,可以构建在溶液中和固态下都具有荧光发射特性的化合物。分别通过多步反应合成了带有烷基硫醚的萘酰亚胺衍生物3和连接炔吡啶的四苯乙烯衍生物7。化合物3和化合物7通过酰胺缩合,合成了一种四苯乙烯-萘酰亚胺二联体化合物8,化合物8兼具ACQ和AIE分子的特性。结果表明:溶液状态下化合物8具有蓝色荧光发射,其最大发射峰位于452 nm,固态下为黄绿色荧光,最大发射峰位于487 nm。利用三氟乙酸对其荧光进行调控能够实现CIE色坐标为(0.33, 0.32)的单分子白光发射。  相似文献   

10.
对于公共安全中存在的安全隐患及时检测和预防有助于保护公民的身体健康和财产安全。荧光检测技术以其优异的选择性、高的灵敏度、快的响应速度引起了广泛的研究。聚集诱导发光(AIE)材料作为一种与聚集导致发光猝灭(ACQ)材料截然相反的新兴有机荧光材料,实现了发光分子在固态或是聚集态下的高荧光量子产率。而独特的AIE特性,使其不必担心由于分子聚集导致的荧光信号的降低或猝灭,同时由于分子聚集程度的增加引起荧光颜色和强度的变化,可以被用来实现对靶标物的定性和定量分析,为荧光分析检测提供了新的思路和方案。目前基于AIE的荧光检测方法及相关技术已经被广泛应用各个领域,其中在公共安全领域的研究表现突出,并取得较高的研究成果。本文分析总结了近几年来AIE分子在公共安全领域中的应用进展,包括爆炸性物质、指纹识别、毒品检测、食品安全等方面,并对目前存在的问题和应用前景进行了总结和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号