首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
磺基甜菜碱两性表面活性剂的结构性质   总被引:1,自引:0,他引:1  
用量子化学中的密度泛函理论, 在B3LYP/6-31+G*水平上, 对十二烷基磺基甜菜碱分子进行了结构优化, 在分子水平上研究了两性表面活性剂与阳离子(Ca2+)、阴离子(Cl)之间的相互作用. 计算结果表明: 两性表面活性剂的负电荷中心采用2∶1型, 即极性头中两个氧原子与阳离子发生稳定结合|而正电荷中心采用侧方, 即N原子的两个亚甲基和一个甲基与阴离子发生稳定结合. 由于桥联亚甲基和α-亚甲基均带有一定数量的电荷, 因此两性表面活性剂中正负电荷中心需要根据亚甲基上电荷多少进行划分. 计算也发现, 表面活性剂尾链带有部分弱电荷, 使胶束内核带有了部分极性, 利于表面活性剂在溶液中的聚集, 此种极性介于烷烃油相和水相的极性之间.  相似文献   

2.
阴离子表面活性剂与阳离子的相互作用   总被引:2,自引:0,他引:2  
用密度泛函理论, 在B3LYP/6-31G水平上, 对十二烷基磺酸盐和羧酸盐阴离子表面活性剂与阳离子(Na+, Ca2+, Mg2+)形成的离子对进行结构优化, 从分子水平上研究表面活性剂与阳离子之间的相互作用. 计算结果表明: 磺酸盐和羧酸盐表面活性剂均采用2:1型, 即极性头中两个氧原子与阳离子发生稳定结合; 在与阳离子结合之前, 表面活性剂分子上的α-亚甲基带有明显的负电荷, 因此将其归为极性头; 但在阳离子电荷诱导下, α-亚甲基转而带有部分弱正电荷, 使极性头范围缩小. 计算也发现, 表面活性剂尾链带有弱正电荷, 使胶束内核带有了部分极性, 利于表面活性剂在溶液中的聚集, 此种极性介于烷烃油相和水相的极性之间.  相似文献   

3.
合成了一系列直链烷基聚氧丙烯醚硫酸钠(CcPpS, c=8或16时, p=9;c=12时, p=3, 6或9)并鉴定了其结构. 与十二烷基硫酸钠(SDS)类似, C12P9S在氧化铝上的饱和吸附量以及对阳离子染料亚甲基蓝的吸附增溶行为共同证实该延展型表面活性剂在表面上形成了双层吸附胶束, 但由聚氧丙烯(PPO)连接基导致的橄榄球状分子及其导致的较大分子吸附面积, 使其吸附能力及其对亚甲基蓝的吸附增溶能力均稍弱于SDS. C12P9S@Al2O3对弱极性分子1-苯乙醇和难溶性分子苯乙烯的吸附增溶能力均明显强于SDS, 而且对1-苯乙醇的吸附增溶量达到SDS@Al2O3的8.5倍, 说明1-苯乙醇主要被增溶在C12P9S双层吸附胶束中PPO连接基所在的膨大部位, 这使延展型表面活性剂改性的氧化铝在废水处理和药物传递系统等领域具有潜在的应用前景.  相似文献   

4.
王腾芳  尚亚卓  彭昌军  刘洪来 《化学学报》2009,67(11):1159-1165
研究了离子液体型表面活性剂C12mimBr与阳离子表面活性剂Gemini 12-3-12, DTAB及阴离子表面活性剂SDS复配体系的性质, 并分别采用Rubingh-Margules模型和Rubingh-正规溶液模型计算了临界胶束浓度和混合胶团组成. 研究发现, 两表面活性剂分子结构的匹配性及带电头基之间的相互作用是影响混合溶液性质的主要因素. 对于分子结构差别较大的C12mimBr与Gemini 12-3-12的混合, 其行为远远偏离理想混合性质; 对疏水链长相同仅亲水头基不同的C12mimBr与DTAB则接近于理想混合; 而对C12mimBr+SDS的复配体系, 正、负电荷间强烈的相互吸引使得混合体系大大偏离理想行为. 计算发现, 两种理论模型得到的混合胶团组成基本一致, 但Rubingh-Margules模型预测的临界胶束浓度比Rubingh-正规溶液模型要好  相似文献   

5.
混合表面活性剂在非极性溶剂中的聚集行为   总被引:1,自引:0,他引:1  
表面活性剂在非极性溶剂中的聚集行为比在水溶液中复杂得多. 水溶液中表面活性剂有一明确的临界胶束浓度(CMC),而在非极性溶剂中至今对CM C概念仍有怀疑[1], 但已有多种手段如染料增溶法、水增溶法、光散射法、荧光偏振、紫外和核磁共振谱等证实并测定了非极性溶剂中 CMC 的存在[1~5]. 表面活性剂在非极性溶剂中以非离子化状态存在, 其缔合主要靠两亲分子之间的偶极-偶极以及离子对相互作用, 那么在一种表面活性剂溶液中加入另一种表面活性剂, 即表面活性剂的复配, 必然对其聚集行为产生重大影响, 但迄今为止, 尚未见关于混合表面活性剂在非极性溶剂中聚集行为的报道. 本文采用碘光谱法和水增溶法测定了阴离子表面活性剂AOT 和非离子表面活性剂 Brij30 混合后在正庚烷中形成反胶束的 CMC, 以期考察表面活性剂的复配对其聚集行为的影响。  相似文献   

6.
尼罗红在离子表面活性剂水溶液中的荧光特性   总被引:1,自引:0,他引:1  
林翠英  赵剑曦  宋利 《化学学报》2009,67(5):381-386
尼罗红(NR)分子具有大的芳香环和基态时可与水分子形成氢键的吸电子基, 它对增溶在表面活性剂胶束栅栏层的环境尤其敏感, 在十二烷基三甲基溴化铵(C12TABr)胶束水溶液中表现为双重荧光, 最大发射波长分别位于578和630 nm. 十二烷基硫酸钠(SDS)胶束的反离子解离度大于C12TABr胶束, 这不仅增大了NR周边环境的极性, 也增多了溶剂化水, 导致与NR氢键作用增强, 荧光强度低于C12TABr, 但有效促进了分子内扭转电荷转移(TICT)激发态形成, 其布居甚至可达到98%以上, 表观上仅出现了在634 nm的单重荧光峰. NR对环境的敏感特性很好地反映了Gemini表面活性剂初始形成胶束的残缺结构信息, 是检测这类具有强烈相互作用两亲分子聚集行为的良好探针.  相似文献   

7.
皮瑛瑛  尚亚卓  刘洪来  胡英 《化学学报》2005,63(14):1281-1287
摘要 采用荧光探针法和电导法研究了正离子偶联表面活性剂(C12H25(CH3)2N-(CH2)6-N(CH3)2C12H25•2Br) (12-6-12• 2Br)和带相反电荷聚电解质聚丙烯酸钠(NaPA)的相互作用, 结果表明: 由于静电相互作用, 12-6-12•2Br和NaPA之间可以形成类胶束或复合物. 对比十二烷基三甲基溴化铵(DTMAB)与NaPA复配体系的荧光光谱, 发现偶联表面活性剂与NaPA的相互作用强于传统表面活性剂. 此外, 还研究了盐和醇对偶联表面活性剂/聚丙烯酸钠的复配体系微极性的影响, 发现盐和醇对表面活性剂在聚电解质上形成类胶束和复合物的溶解都有一定的促进作用.  相似文献   

8.
重氮树脂(DR)是二苯胺-4-重氮盐(DDS)与甲醛的缩合产物,它是最重要的阴图胶印版的感光剂.DR和DDS的缺点是热稳定性差,特别是在水中.本论文第一部分内容是关于DDS和DR与表面活性剂相互作用的研究.研究结果表明:DR和DDS的热稳定性在阴离子表面活性剂十二烷基硫酸钠(SDS)水溶液中得到显著提高.原因是DDS和DR分子与SDS分子间的疏水相互作用和静电吸引作用使它们可以进入SDS的胶束相,同SDS分子共同形成混合胶束.所以DR和DDS在S DS水溶液中存在胶束相和水相的分配平衡.处于胶束相的DDS或DR,由于胶束的静电及极性效应使它们的重氮基得到保护.进入胶束相的DDS和DR的量越多,它们水溶液的热稳定性提高越显著.由于DDS和DR与SDS间较强的相互作用使SDS浓度(≈10-5mol/L)在远低于临界胶束浓度(8×10-3mol/L)时形成了混合预胶束,预胶束对DDS和DR同样具有保护作用.  相似文献   

9.
十四烷基芳基磺酸盐形成的分子有序组合体   总被引:1,自引:0,他引:1  
以表面张力法、碘光谱法、水增溶法和相态图法研究了自制的三种十四烷基芳基磺酸盐在不同条件下形成的分子有序组合体(胶束、反胶束和微乳液),并考察了分子结构、溶剂、无机盐和短链醇等对其的影响.结果表明:增加十四烷基芳基磺酸盐分子亲油基支化度,不利于其在水溶液或混合极性溶剂(乙二醇-水)中形成胶束而有利于其在非极性溶剂正庚烷中形成反胶束;溶剂极性的降低,促使表面活性剂溶液由胶束溶液→单体溶液→反胶束溶液转变;无机盐或短链醇的加入促进了水溶液中胶束的形成,且反离子价态数或醇烷基碳原子数越大,越有利于胶束形成;无机盐浓度的增加导致表面活性剂/正丁醇/正辛烷/NaCl/水形成的微乳液体系在一定温度下发生由WinsorI→WinsorIII→WinsorII型的转变.  相似文献   

10.
用光谱法研究了荧光分子4-二氰乙烯基-N,N-二甲基苯胺(DCVA)与十二烷基硫酸钠(SDS)、聚氧乙烯(23)月桂醚(BRIJ35)、十二烷基三甲溴化铵(DTAB)胶束间的相互作用.与在水中相比,在上述3类表面活性剂溶液中探针的荧光强度分别增加到3.3、5.4和5.1倍;最大发射波长随表面活性剂浓度的增加分别蓝移了5、11和9nm.由此可知,DCVA在DTAB和BRIJ35胶束中所处微环境的极性相似,而在SDS胶束中DCVA所处微环境的极性较大.通过DCVA在3种表面活性剂溶液中的荧光强度,计算出了DCVA与其胶束的结合常数分别为1.7×103、1.4×103和8.8×102.  相似文献   

11.
The structures of the mixed anionic/nonionic surfactant micelles of SDS/C12E6 and SDS/C12E8 have been measured by small angle neutron scattering (SANS). The variations in the micelle aggregation number and surface charge with composition, measured in D2O and in dilute electrolyte, 0.01 and 0.05 M NaCl, provide data on the relative roles of the surfactant headgroup steric and electrostatic interactions and their contributions to the free energy of micellization. For the SDS/C12E8 mixture, solutions increasingly rich in C12E8 show a modest micellar growth and an increase in the surface charge. The changes with increasing electrolyte concentration are similarly modest. In contrast, for the SDS/C12E6 mixture, solutions rich in C12E6 show a more significant increase in aggregation number. Furthermore, electrolyte has a more substantial effect on the aggregation for the nonionic (C12E6) rich mixtures. The experimental results are discussed in the context of estimates of the steric and electrostatic contributions to the free energy of micellization, calculated from the molecular thermodynamic approach. The variation in micelle surface charge is discussed in the context of the "dressed micelle" theory for micelle ionization, and other related data.  相似文献   

12.
A series of photoinduced H-atom abstraction reactions between anthraquinone-2,6,-disulfonate, disodium salt (AQDS) and differently charged micellar substrates is presented. After a 248 nm excimer laser flash, the first excited triplet state of AQDS is rapidly formed and then quenched by abstraction of a hydrogen atom from the alkyl chain of the micelle surfactant, leading to a spin-correlated radical pair (SCRP). The SCRP is detected 500 ns after the laser flash using time-resolved (direct detection) electron paramagnetic resonance (TREPR) spectroscopy at X-band (9.5 GHz). By changing the charge on the surfactant headgroup from negative (sodium dodecyl sulfate, SDS) to positive (dodecyltrimethylammonium chloride, DTAC), TREPR spectra with different degrees of antiphase structure (APS) in their line shape were observed. The first derivative-like APS line shape is the signature of an SCRP experiencing an electron spin exchange interaction between the radical centers, which was clearly observable in DTAC micelles and absent in SDS micellar solutions. Solutions with surfactant concentrations well below the critical micelle concentration (cmc) or solutions where micellar formation had been disrupted (1:1 v/v CH(3)CN/H(2)O) also showed no APS line shapes in their TREPR spectra. These results support the conclusion that electrostatic forces between the sensitizer (AQDS) charge and the substrate (surfactant) headgroup charge are responsible for the observed effects. The results represent a new example of electrostatic control of a spin exchange interaction in mobile radical pairs.  相似文献   

13.
In this work small angle X-ray scattering (SAXS) studies on the interaction of the phenothiazine trifluoperazine (TFP, 2-10 mM), a cationic drug, with micelles of the zwitterionic surfactant 3-(N-hexadecyl-N,N-dimethylammonium) propane sulfonate (HPS, 30 mM) and the anionic surfactant sodium dodecyl sulfate (SDS, 40 mM) at pH 4.0, 7.0, and 9.0 are reported. The data were analyzed through the modeling of the micellar form factor and interference function, as well as by means of the distance distribution function p(r). For anionic micelles (SDS), the results evidence a micellar shape transformation from prolate ellipsoid to cylinder accompanied by micellar growth and surface charge screening as the molar ratio TFP:SDS increases in the complex for all values of pH. Small ellipsoids with axial ratio nu=1.5+/-0.1 (long dimension of 60 A) grow and reassemble into cylinder-like aggregates upon 5 mM drug incorporation (1 TFP:8 SDS monomers) with a decrease of the micelle surface charge. At 10 mM TFP:40 mM SDS cylindrical micelles are totally screened with an axial ratio nu approximately 4 (long dimension approximately 140 A at pH 7.0 and 9.0). However, at pH 4.0, where the drug is partially diprotonated, 10 mM TFP incorporation gives rise to a huge increase in micellar size, resulting in micelles at least 400 A long, without altering the intramicellar core. For zwitterionic micelles (HPS), the results have shown that the aggregates also resemble small prolate ellipsoids with averaged axial ratio approximately nu=1.6+/-0.1. Under TFP addition, both the paraffinic radius and the micellar size show a slight decrease, giving evidence that the micellar hydrophobic core may be affected by phenothiazine incorporation rather than that observed for the SDS/TFP comicelle. Therefore, our results demonstrate that the axial ratio and shape evolution of the surfactant:TFP complex are both dependent on surfactant surface-charge and drug:surfactant molar ratio. The results are compared with those recently obtained for another phenothiazine drug, chlorpromazine (CPZ), in SDS and HPS micelles (Caetano, Gelamo, Tabak, and Itri, J. Colloid Interface Science 248 (2002) 149).  相似文献   

14.
In this work, small-angle X-ray scattering (SAXS) studies on the interaction of the phenothiazine cationic compounds trifluoperazine (TFP, 2-10 mM) and chlorpromazine (CPZ, 2-10 mM) with micelles of the zwitterionic surfactant L-alpha-lysophosphatidylcholine (LPC, 30 mM), at pHs 4.0 and 7.0, are reported. The SAXS results demonstrate that, upon addition of both phenothiazines, the LPC micelle of prolate ellipsoidal shape changes into a cylindrically shaped micelle, increasing its axial ratio from 1.6 +/- 0.1 (in the absence of drug) to 2.5 +/- 0.1 (for 5 and 10 mM of phenothiazine). Such an effect is accompanied by a shrinking of the paraffinic shortest semiaxis from 22.5 +/- 0.3 to 20.0 +/- 0.5 A. Besides, a significant increase in polar shell electron density from 0.39(1) to 0.45(1) e/A3 is observed, consistent with cylinder-like aggregate geometry. Moreover, an increase of the phenothiazine concentration induces the appearance of a repulsive interference function over the SAXS curve of zwitterionic micelles, which is typical of interaction between surface-charged micelles. Such a finding provides evidence that the positively charged phenothiazine molecule must be accommodated near the hydrophobic/hydrophilic inner micellar interface in such a way that a net surface charge is altered with respect to the original overall neutral zwitterionic micelle. Such phenothiazine location is favored by both electrostatic and hydrophobic contributions, giving rise to binding constant values, obtained from electronic absorption results, that are quite larger compared to their binding to another zwitterionic surfactant, 3-(N-hexadecyl-N,N-dimethylammonio)propanesulfonate (HPS) (Caetano, W., et al. J. Colloid Int. Sci. 2003, 260, 414-422). Comparisons are made by means of theoretical calculations of the surfactant headgroup dipole moments for monomers of LPC and HPS. The theoretical results show that the dipole moment in LPC is almost perpendicular to the methylene chain, while a significant contribution along the methylene chain occurs for HPS. Besides, evidence is presented for extensive delocalization of the charges in the headgroups, which could be also relevant for the binding of the drugs.  相似文献   

15.
We report on the detection of micellar growth in anionic, cationic, and catanionic surfactant systems using a novel surfactant type fluorescence probe, sodium 12-(N-dansyl)amino-dodecanate (12-DAN-ADA). The fluorescent group was incorporated in the tail of the surfactant which tethers the fluorescent group deep inside the apolar micellar cores. The fluorescence anisotropy of 12-DAN-ADA was found to be very sensitive for directly detecting the micellar growth in micelles containing oppositely charged surfactants, including cationic CTAB systems and mixed systems of oppositely charged surfactants (DEAB/SDS); in regard to the like charged SDS micellar systems, the sensitivity can be greatly enhanced by addition of a water soluble quencher which quenches the background fluorescence from the equilibrium population of free 12-DAN-ADA.  相似文献   

16.
Mixtures of Zn(II) and 8-hydroxyquinoline (8QOH) in a 1:2 proportion, in aqueous solutions, result in fast complexation, followed by precipitation. Addition of 0.05 M sodium dodecyl sulfate (SDS), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-16) or Triton X-100 results in considerable retardation of precipitation. In the presence of SDS, SB3-12, SB3-16 and Triton X-100 the 8QOH chelates are only kinetically stable in solution and after 24 h, the precipitation is almost quantitative. Conversely, upon addition of the cationic surfactant hexadecyltrimethylammonium bromide (CTABr), the absorbance of the complex remains constant even after at least six months. The interaction of the ligand 8QOH (and of the (8QO)(2)Zn(II) complex) with the cationic surfactant was studied by ultraviolet and NMR spectroscopy and 8QOH has a pK(a)=9.05 in the presence of the cationic surfactant and the ligand intercalates in the micelle, being preferentially located near the headgroup of the micelle. Although the solubilization site of the (8QO)(2)Zn(II) complex is similar to that of 8QOH, the interaction of the aromatic moiety with the CTA(+) headgroup is much stronger, due to the increased electron density in the aromatic ring of the ligand. As a consequence of this interaction, sphere to rod transition and an increase in microscopic and macroscopic viscosity are observed.  相似文献   

17.
Phenomenon of clouding in charged micellar solutions is a fairly recent addition to conventional phenomenon shown by aqueous nonionic micelles. In this paper, we have tested a Hofmeister-like ordering of charged headgroups in the context of cloud point (CP) and micellar growth. For this purpose, we have used various combinations of surfactant (sodium dodecyl sulfate, SDS; sodium dodecylbenzene sulfonate, SDBS; sodium salts of α-sulfonato myristic acid methyl ester, MES; and α-sulfonato palmitic acid methyl ester, PES) and tetra-n-butylammonium bromide (TBAB). Different surfactant concentrations and TBAB concentrations are used and CP measurements have been performed. CP values were found in the order SDBS?<?SDS?<?PES?<?MES for the same concentration of surfactant and TBAB. This order has been discussed in the light of water affinities of interacting ionic species (i.e., surfactant headgroup and TBA+ counterion). The ordering was found similar for the case of micellar growth studied by dynamic light scattering (DLS). A bimodal distribution of aggregate size was found that transforms to giant aggregates at CP. The micelles of roughly 10-nm size convert to aggregates of 1 μm. The study has a few novelties: (1) headgroup dependence of CP, (2) micellar growth on heating, and (3) confirmation of Hofmeister-like series of headgroup.  相似文献   

18.
If a vesicle is a better model of a membrane in the context of the hydrophobic effect, then from the charge distribution point of view, a catanionic micelle is a closer model to a biomembrane. We have prepared and characterized two different types of catanionic micelles of sodium dodecyl sulfate (SDS) and cetyl N,N,N-trimethylammonium bromide (CTAB) having different surface charge ratios using optical spectroscopy and transmission electron microscopy. The average size of both types of mixed micelles was found to be much larger than that of micelles containing uniformly charged headgroups. Catanionic micelles containing higher concentrations of positively charged headgroups (CTAB) are larger in size, less compact, and more polar compared to the micelles containing higher concentrations of negatively charged headgroups (SDS). We have used these catanionic micelles as membrane mimetic systems to understand the interaction of piroxicam, a nonsteroidal anti-inflammatory drug (NSAID) of the oxicam group, with biomembranes. In continuation of our work on membrane mimetic systems, we have used spectral properties of the drug itself to understand the effect of the presence of mixed charges on the micellar surface in guiding the interaction of catanionic micelles with piroxicam. Our earlier studies of the interaction of piroxicam with micelles having uniform surface charges have shown that the charge on the micellar surface not only dictates which prototropic form of the drug will be incorporated in the micelles but also induces a switch-over between different prototropic forms of piroxicam. The equilibrium of this switch-over is extremely sensitive to the environment. In this study, we demonstrate how even small changes in the electrostatic forces obtained by doping the uniformly charged surface of the micelles with oppositely charged headgroups (as in catanionic micelles) are capable of fine-tuning this equilibrium. This implies that the surface charge of biomembranes, which are quite diverse in vivo, might play a significant role in selecting a particular form of the drug to be presented to its targets.  相似文献   

19.
The interactions of sodium dodecyl sulfate (SDS) with the triblock copolymer L64 (EO13-PO30-EO13) and hexaethylene glycol mono-n-dodecyl ether (C12EO6) were studied using electromotive force, isothermal titration microcalorimetry, differential scanning microcalorimetry, and surface tension measurements. In certain regions of binding, mixed micelles are formed, and here we could evaluate an interaction parameter using regular solution theory. The mixed micelles of L64 with both SDS and C12EO6 exhibit synergy. When L64 is present in its nonassociated state, it forms polymer/micellar SDS complexes at SDS concentrations above the critical aggregation concentration (cac). The cac is well below the critical micellar concentration (cmc) of pure SDS, and a model suggesting how bound micelles are formed at the cac in the presence of a polymer is described. The interaction of nonassociated L64 with C12EO6 is a very rare example of strong binding between a nonionic surfactant and a nonionic polymer, and C12EO6/L64 mixed micelles are formed. We also carried out small angle neutron scattering measurement to determine the structure of the monomeric polymer/micellar SDS complex, as well as the mixed L64/C12EO6 aggregates. In these experiments, contrast matching was achieved by using the h and d forms of SDS, as well as C12EO6. During the early stages of the formation of polymer-bound SDS micelles, SDS aggregates with aggregation numbers of approximately 20 were found and such complexes contain 4-6 bound L64 monomers. The L64/C12EO6 data confirmed the existence of mixed micelles, and structural information involving the composition of the mixed micelle and the aggregation numbers were evaluated.  相似文献   

20.
有机电解质在胶束催化聚苯乙烯氯甲基化反应中的作用   总被引:1,自引:0,他引:1  
在实施聚苯乙烯氯甲基化反应的胶束催化体系中加入四丁基溴化铵 ((Bu)4NBr, TBAB), 研究了有机电解质TBAB对胶束催化反应的影响规律. 实验结果表明, 在非离子表面活性剂NP-10及阴离子表面活性剂SDS的胶束催化体系中, TBAB的加入使聚苯乙烯氯甲基化反应的速率明显增大, 前者尤为突出;而在阳离子表面活性剂CTAB的胶束催化体系中, TBAB的加入几乎对反应速率无促进作用. 这种结果一方面归因于加入电解质TBAB会降低SDS的临界胶束浓度, 从而增强对聚苯乙烯四氯化碳溶液的增溶能力;更主要的原因是TBAB的丁基与表面活性剂碳氢链间的疏水相互作用会使季铵离子(Bu)4N+嵌入SDS的胶束之中, 结合到NP-10的胶束表面, 使SDS胶束的阴离子头基对亲核取代反应(控制步骤)的禁阻作用得以减缓, 使NP-10的胶束表面携带了正电荷, 显著促进亲核取代反应的进行, 而对于CTAB的胶束, 由于静电排斥作用, 季铵离子(Bu)4N+不能接近CTAB的胶束, 故TBAB的加入对聚苯乙烯氯甲基化反应不产生作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号