首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用水热后合成法制备了BiVO_4/SBA-15可见光催化剂,通过XRD、N_2吸附-脱附、UV-vis进行表征分析。在自制光催化装置中采用400W金卤灯照射,进行光催化氧化模拟柴油脱硫研究,考察了反应条件对脱硫的影响。结果表明,BiVO_4/SBA-15催化剂保持了SBA-15分子筛的介孔结构,在脱硫反应中有良好的催化活性,当BiVO_4/SBA-15用量为15g/L、n(O)/n(S)=2.0、60℃下反应4h,剂油比为1∶1时,模拟柴油脱硫率达到95.58%。  相似文献   

2.
用共浸渍法制备了Co-Ni2P/SBA-15前躯体,将其调制成活性胶后均匀涂覆到预处理后的堇青石载体上,程序升温还原后制备了一系列Co-Ni2P/SBA-15/堇青石整体式催化剂。采用XRD、N2吸脱附和XPS等对催化剂进行了表征,以1 wt%二苯并噻吩(DBT)/十氢萘溶液为模型化合物,在微型固定床反应器上对催化剂的加氢脱硫(HDS)性能进行了评价。结果表明,不同Co含量的Co-Ni2P/SBA-15/堇青石整体式催化剂中都形成了Ni2P相。Co的加入提高Ni2P/SBA-15/堇青石催化剂的比表面积和孔体积。Co含量为0.55wt%的Co-Ni2P/SBA-15/堇青石整体式催化剂有最好的二苯并噻吩加氢脱硫活性,在380℃,二苯并噻吩转化率能够达到98.8%。Co的加入能够提高二苯并噻吩直接加氢脱硫产物联苯的选择性。  相似文献   

3.
以1-丁基-3-甲基咪唑溴离子液体([Bmim]Br)、磷钨酸(H_3PW_(12)O_(40))和g-C_3N_4为原料,采用原位沉淀法合成了负载型[Bmim]_3PW_(12)O_(40)/g-C_3N_4催化剂(BPWO/g-C_3N_4)。通过XRD、FT-IR、UV-vis、氮气吸附、TEM和XPS等手段对催化剂的形貌和结构进行了表征,并以二苯并噻吩(DBT)的正庚烷溶液为模拟油、过氧化氢为氧化剂,考察了各组分负载量、催化剂用量、氧/硫物质的量比(O/S)和反应温度变量等对其氧化脱硫效果的影响。结果表明,BPWO/g-C_3N_4具有Keggin型杂多阴离子结构特征,BPWO (20%)/g-C_3N_4催化剂具有最优的对DBT的氧化脱硫性能,在50℃、O/S物质的量比为6.0的条件下反应180 min,可以完全氧化浓度为800μg/g的含DBT模拟油。同时,该BPWO/g-C_3N_4催化剂具有良好的重复使用性能,循环使用八次后其对DBT的氧化活性没有明显降低。  相似文献   

4.
离子液体耦合有机过氧化物脱除二苯并噻吩的研究   总被引:1,自引:0,他引:1  
以12-磷钨酸为催化剂,研究了离子液体耦合有机过氧化物脱除二苯并噻吩(DBT)。研究结果表明,单独使用离子[bmim]BF4、[bmim]PF6液体为萃取剂,脱硫率为27.78%~38.76%。以由等体积的H2O2与甲酸制成有机过氧化物为氧化剂,不使用催化剂和离子液体,温度70℃,反应时间6 h,DBT氧化为二苯并噻吩砜的比例为76.6%。在催化剂作用下,将离子液体与氧化剂耦合使用时,脱硫率明显提高。当催化剂与DBT的摩尔比为0.20∶1,氧化剂与DBT的体积比为10∶1,[bmim]PF6离子液体与DBT的体积比为1∶1,在70℃反应6 h后,脱硫率可达98.60%。耦合体系重复使用五次后,氧化脱硫活性没有明显降低。  相似文献   

5.
为进一步提高氧化脱硫效果,采用直接水热法合成了不同Fe/Zr物质的量比改性的SBA-15分子筛(Fe/Zr-SBA-15),采用XRD、N2吸附-脱附、TEM和UV-vis等对其进行了表征。Fe/Zr-SBA-15中Zr取代Si进入了分子筛骨架,大部分Fe物种分散良好,存在少量的聚集态铁的氧化物。以Fe/Zr-SBA-15-1.0为催化剂、H2O2为氧化剂、乙腈为萃取剂,分别考察了反应温度、O/S物质的量比和催化剂用量对模拟油中二苯并噻吩(DBT)的氧化效果。在反应温度50℃,O/S物质的量比为4,催化剂用量6 g/L的条件下,DBT的脱除率达到97.1%,这是由于催化剂中的Fe3+提供氧化活性中心和Zr4+提供的吸附中心的双重作用,且催化剂回收利用四次后,DBT的脱除率仍可达到91.3%。  相似文献   

6.
Ni2P/SBA-15催化剂的结构及加氢脱硫性能   总被引:7,自引:1,他引:6  
以硝酸镍为镍源,磷酸氢二铵为磷源,介孔分子筛SBA-15为载体,用共浸渍法制备了含磷化镍前驱体的样品,然后在氢气流中采用程序升温还原法,制备了Ni2P质量分数为5%-40%的Ni2P/SBA-15催化剂.用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)等分析测试技术对催化剂的结构进行了表征,以噻吩和二苯并噻吩(DBT)为模型化合物,在微型同定床反应器上对催化剂的加氧脱硫(HDS)性能进行了评价.结果表明,Ni2P/SBA-15催化剂中SBA-15的介孔结构依然存在,活性组分Ni2P具有良好的分散性,但随Ni2P含量的增加,催化剂的比表面积、孔容和孔径均有明显减小.当反应温度为320℃时,Ni2P含量为15%-25%(w)的催化剂就具有很好的加氢脱硫催化性能;反应温度在360℃以上时,所有催化剂都具有优异的深度脱硫催化性能.Ni2P/SBA-15催化剂对二苯并噻吩的加氢脱硫(HDS)主要以直接脱硫机理(DDS)进行.  相似文献   

7.
酸性离子液体萃取/催化二苯并噻吩氧化脱硫反应的优化   总被引:5,自引:1,他引:4  
ö以Brönsted酸性离子液体N-甲基-2-吡咯烷酮磷酸二氢盐(\[Hnmp\]H2PO4)为萃取剂和催化剂,双氧水为氧化剂,二苯并噻吩(DBT)溶于正辛烷为模型油,利用正交实验法优化了DBT氧化脱硫反应工艺。所优化的反应条件为:反应温度60℃,模型油与离子液体体积比为1∶1,氧/硫摩尔比为16, 氧化时间5h;在此条件下模型油脱硫率达99.8%,实际柴油脱硫率为64.3%。由正交实验极差可知,各因素对DBT脱硫率影响的大小依次为:反应温度>反应时间>氧/硫摩尔比>剂油比;离子液体循环利用6次,脱硫率下降不明显。  相似文献   

8.
在H2O2/WO3/ZrO2氧化体系中对以甲苯为溶剂、二苯并噻吩(DBT)为模型含硫化合物的模拟油品(硫的质量分数为1540×10-6)进行了氧化脱硫研究,考察了反应温度、反应时间、氧化剂加入量、催化剂用量对DBT转化率的影响。实验结果表明,在反应温度50℃,反应时间90min,氧化剂加入量油/H2O2的体积比为20∶1和催化剂用量0.02g/mL的适宜氧化脱硫条件下,96%以上的DBT氧化为容易分离脱除的二苯并噻吩砜(DBTOs);同时研究了DBT氧化反应动力学,得知DBT氧化反应为一级反应,表观活化能Ea为55.37kJ/mol,指前因子A为3.35×107min-1。  相似文献   

9.
MoO3/介孔Al2O3催化氧化脱除模拟油中的硫   总被引:1,自引:0,他引:1  
以环己烷为溶剂,二苯并噻吩(DBT)、苯并噻吩(BT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)、噻吩(Th)作为模型含硫化合物配制成模拟油,在MoO3/介孔Al2O3-H2O2体系中对模拟油催化氧化脱硫进行了研究. 考察了MoO3负载量、氧化剂用量、催化剂用量、氧化反应温度及反应时间对DBT脱除效果的影响. 实验结果表明:在MoO3负载量为20%,催化剂用量为1.5%,氧化剂H2O2与模拟油中硫的摩尔比为4,反应温度为60℃,反应时间为40分钟时DBT脱除率最高,达99.4%,几乎可以被完全脱除;在此条件下模型化合物的氧化反应活性顺序为:DBT > 4,6-DMDBT >BT>Th.  相似文献   

10.
高铁酸钾氧化脱除模拟轻质油中的含硫化合物   总被引:1,自引:0,他引:1  
考察了K2FeO4对模拟轻质油中苯并噻吩(BT)及二苯并噻吩(DBT)的氧化性能。结果表明,水相中K2FeO4对BT、DBT的氧化活性比较低,水的存在使K2FeO4水解成黄色的Fe(OH)3而失去氧化有机硫化物的能力;在冰乙酸反应介质中,K2FeO4对BT及DBT的氧化活性有了明显的提高;固体催化剂KM的加入显著提高了乙酸反应介质中K2FeO4对BT及DBT的氧化活性。常温、常压,醋酸/模拟油体积比为1.0,K2FeO4/S摩尔比为1.0,KM/K2FeO4质量比为1.0的条件下,DBT的转化率达98.4%,BT的转化率为70.1%。  相似文献   

11.
采用水热后合成法制备了BiVO_4/SBA-15催化剂,利用XRD、SEM-EDS和N2吸附-脱附等手段对其进行表征分析,并在自制的光催化反应装置中对其静态光催化氧化脱硫性能进行了研究。结果表明,BiVO_4/SBA-15催化剂具有SBA-15分子筛的介孔孔道结构,BiVO_4均匀分布在SBA-15分子筛表面。BiVO_4/SBA-15催化剂具有良好的催化氧化脱硫性能,在BiVO_4负载量为15%、水热合成时间为18 h、530℃下焙烧3 h制备的BiVO_4/SBA-15催化剂,对模拟柴油的脱硫率可达95.6%。  相似文献   

12.
采用孔道内水解法制备了WO_3-TiO_2/SBA-15催化剂用于光催化氧化柴油脱硫,利用XRD、SEM、EDS、N2吸附-脱附、FT-IR、TG-DTA和UV-vis等技术对该催化剂进行了表征,考察了WO_3和TiO_2负载量、焙烧温度和焙烧时间对其光催化氧化脱硫性能的影响。结果表明,WO3和Ti O2负载量分别为1.6%和15%,焙烧温度500℃,焙烧时间为3 h条件所制备的催化剂性能最佳;在该条件下制备的WO_3-TiO_2/SBA-15催化剂仍保持SBA-15的六方介孔结构,模拟柴油的脱硫率高达87.9%,且具有良好的回收再生性能。  相似文献   

13.
用混合煅烧法制备了CuWO4/C复合物,并采用XRD、SEM、和BET等技术对其结构进行表征。以CuWO4/C复合物为催化剂、过氧化氢为氧化剂、1-乙基-3-甲基咪唑硫酸乙酯盐离子液体为萃取剂氧化脱除模拟油中的二苯并噻吩(DBT)。考察了反应温度、双氧水加入量、萃取剂加入量等因素对脱硫效果的影响。结果表明,在相同的实验条件下,相比于CuWO4,CuWO4/C复合物具有更高的脱硫率。在模拟油为5.0 mL、催化剂加入量为0.02 g、H2O2加入量0.2 mL、萃取剂加入量1.0 mL、反应温度70℃、反应时间180 min的最佳实验条件下,DBT转化率可达到98.2%,催化剂循环使用四次活性没有明显降低。  相似文献   

14.
以硝酸镍为镍源, 磷酸氢二铵为磷源, 介孔分子筛SBA-15为载体, 用共浸渍法制备了含磷化镍前驱体的样品, 然后在氢气流中采用程序升温还原法, 制备了Ni2P质量分数为5%-40%的Ni2P/SBA-15催化剂. 用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)等分析测试技术对催化剂的结构进行了表征, 以噻吩和二苯并噻吩(DBT)为模型化合物, 在微型固定床反应器上对催化剂的加氢脱硫(HDS)性能进行了评价. 结果表明, Ni2P/SBA-15催化剂中SBA-15 的介孔结构依然存在, 活性组分Ni2P具有良好的分散性, 但随Ni2P含量的增加, 催化剂的比表面积、孔容和孔径均有明显减小. 当反应温度为320 ℃时, Ni2P含量为15%-25%(w)的催化剂就具有很好的加氢脱硫催化性能; 反应温度在360 ℃以上时, 所有催化剂都具有优异的深度脱硫催化性能. Ni2P/SBA-15催化剂对二苯并噻吩的加氢脱硫(HDS)主要以直接脱硫机理(DDS)进行.  相似文献   

15.
采用一锅合成法通过调变自组装过程中硫酸和盐酸的体积比,成功制备了系列介孔SO42-/ZrO2-SiO2固体酸材料(Zr/Si物质的量为1.1).XRD、UV-Vis DRS、HR-TEM等表征结果表明,所得材料均具有高度有序的二维介孔结构及四方相氧化锆的晶体结构.氮吸附和FT-IR表征结果进一步发现,通过改变硫酸/盐酸体积比可有效调变材料比表面积、孔容、孔径及表面L酸与B酸的相对强度.与纯硅介孔分子筛SBA-15不同,此系列SO42-/ZrO2-SiO2固体酸材料均在正戊烷的异构化反应中表现出较高的催化活性和稳定性.其原因在于,在合成过程中硫酸的加入不仅促使了酸基的形成,而且稳定了催化剂的晶体结构;盐酸的存在则保持了有序的介孔结构.由此可见,混酸合成体系有望制备出结构有序、酸性可调、催化性能优越的新型催化材料,并在众多酸催化反应中取得应用.  相似文献   

16.
以介孔二氧化硅SBA-15 为载体, 采用等体积浸渍法制备了Fe/SBA-15. 通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)等技术对其进行了表征, 并用于对水溶液中罗丹明B (RhB)的芬顿氧化. 表征结果表明了Fe/SBA-15维持了长程有序的介孔结构, 孔径和比表面积都有所下降, 并呈现棒状体的聚集态, 平均直径为0.6 μm. Fe 以α-Fe2O3的形态同时存在于介孔孔道内外. 在Fe/SBA-15 和H2O2同时存在条件下RhB的去除是吸附和催化氧化降解的协同作用所致, 并且与Fe/SBA-15 投加量密切相关, 但与初始溶液pH 几乎无关. 当Fe/SBA-15 投加量为0.15 g·L-1, RhB 初始浓度为10.0 mg·L-1,H2O2/Fe3+摩尔比为2000:1,初始溶液pH为5.4和反应温度为21 ℃时, RhB去除率达到了93%. Fe/SBA-15的Langmiur 单分子层饱和吸附量为99.11 mg·g-1. 此外, 采用H2O2浸泡方式对使用过的Fe/SBA-15可进行再生,连续6 次循环使用后仍可维持80%的RhB去除率, 且每次使用后Fe浸出浓度都在0.1 mg·L-1 (或者0.6% (质量分数))以下. 基于淬灭实验、UV-Vis 光谱和气相色谱-质谱(GC-MS)联用仪分析的结果, 提出了RhB的去除机理. 非均相芬顿催化剂Fe/SBA-15可用于去除像RhB这样的生物难降解有机物.  相似文献   

17.
以硅质骨架结构介孔分子筛SBA-15为载体,采用浸渍法合成CuO-ZnO/SBA-15(CZ/SBA-15)、CuO-ZnO-MnO_2/SBA-15(CZM/SBA-15)、CuO-ZnO-ZrO_2/SBA-15(CZZ/SBA-15)三组多孔催化剂,在固定床反应器上评价了各组催化剂催化CO_2加氢合成甲醇的性能,同时结合N_2吸附-脱附(BET)、X射线衍射(XRD)、H_2程序升温还原(H_2-TPR)、程序升温脱附(H_2-TPD、CO_2-TPD)、N_2O滴定、X射线光电子能谱(XPS)、透射电子显微镜(TEM)等表征研究了不同助剂对CO_2催化加氢制甲醇的影响。结果表明,催化剂中的金属氧化物改变了SBA-15分子筛载体的孔径大小和比表面积;催化剂CuO-ZnO-MnO_2/SBA-15、CuO-Zn O-ZrO_2/SBA-15中铜的分散度(D_(Cu))和比表面积(A_(Cu))更大,表面CuO粒径更小,更易被还原;相比Mn-O簇,Zr-O簇为增强了碱性位点,提高了甲醇选择性。此外,CuO-ZnO-ZrO_2/SBA-15具有更高的氧空位浓度,催化活性更好,其甲醇选择性为25.02%,与CuO-ZnO/SBA-15、CuO-ZnO-Mn O_2/SBA-15相比分别提高了28%和136.9%,催化效果最好。  相似文献   

18.
利用蒸发诱导法制备了HCl改性的MoO3/Al-SBA-15系列催化剂,采用XRD、BET、TEM、NH3-TPD进行了表征。结果表明,改性后的催化剂保留着SBA-15的六角结构,孔道结构保持有序状态,改性后样品的孔径8 nm左右,壁厚4 nm左右,属于典型的介孔分子筛,活性组分在载体中分布良好。以预加氢后的中低温煤焦油为原料,采用固定床加氢裂化对催化剂进行了评价,结果表明,经过预硫化之后,负载了MoO3的Al-SBA-15具有良好的加氢裂化活性,MoO3负载量14.9%的情况下,65-145℃石脑油和145-280℃航煤馏分两种较轻组分合计收率为79.21%,其中,石脑油具备很高的芳潜值,最高可达72.4,是优良的重整制取芳烃的原料,裂化后的尾油BMCI值过高,不适宜作为裂化乙烯的原料。  相似文献   

19.
通过无模板剂一锅法制备出一种具有较大比表面积和孔容的介孔Ni-CaO-ZrO2催化剂,并将其用于CH4-CO2重整反应过程。利用N2吸附-脱附(BET)、SEM、TEM、X射线粉末衍射(XRD)、程序升温还原(H2-TPR)以及热重(TG)等手段对催化剂进行了表征。结果表明,该催化剂具有较强的金属-载体相互作用,这种强金属-载体相互作用(SMSI)使Ni与载体紧密接触,有利于吸附物种在界面进行快速反应,使催化剂在反应过程中具有较高的反应活性和稳定性。虽然反应后的催化剂表面有一定量的积炭生成,但这些积炭多以丝状碳为主,并不会覆盖催化剂的活性位点。  相似文献   

20.
以介孔材料SBA-15作为载体,采用浸渍法制备Co-B/SBA-15非晶态催化剂,该样品仍然保持SBA-15特有的有序规整孔道结构,Co-B非晶态合金颗粒均匀分布在孔道内壁,采用普通SiO2载体制备的Co-B/ SiO2,Co-B颗粒主要分布在外表面.在肉桂醛选择性加氢制肉桂醇中,Co-B/SBA-15的催化活性和对肉桂醇的最佳得率显著高于Co-B/SiO2,主要归因于活性位的高分散,规整的孔道结构,以及独特的活性位团簇结构和电子态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号