首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In order to study the interaction of histidine- and tyrosine-containing peptide chains with Hg(II), the nuclear quadrupole interaction (NQI) of 199mHg in the Hg complexes of the oligopeptides Alanyl–Alanyl–Histidyl–Alanyl–Alanine-amid (AAHAA–NH2) and Alanyl–Alanyl–Tyrosyl–Alanyl–Alanine-amid (AAYAA–NH2) was determined by time differential perturbed angular correlation and is compared with previous data on Alanyl–Alanyl–Cysteyl–Alanyl–Alanyl (AACAA–OH). The 199mHg–NQIs depend on the oligopeptide to Hg(II) stoichiometry and indicate that two-fold and four-fold coordinations occur for the bound Hg(II). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Methods of transmission electron microscopy of thin foils are used to study the evolution of dislocation substructures in Fe–0.1C–1.7Mn–0.92Ti–18.2Cr–10.4Ni–0.71Si corrosion-proof austenitic steel subject to high-cycle fatigue loading to destruction. Quantitative dependences of the dislocation substructure parameters on the number of loading cycles and distances to the sample surface are established. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 42–45, March, 2009.  相似文献   

3.
This paper deals with plasma polymerization processes of diethylene glycol dimethyl ether. Plasmas were produced at 150 mtorr in the range of 10 W to 40 W of RF power. Films were grown on silicon and quartz substrates. Molecular structure of plasma polymerized films and their optical properties were analyzed by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy. The IR spectra show C–H stretching at 3000–2900 cm-1, C=O stretching at 1730–1650 cm-1, C–H bending at 1440–1380 cm-1, C–O and C–O–C stretching at 1200–1000 cm-1. The concentrations of C–H, C–O and C–O–C were investigated for different values of RF power. It can be seen that the C–H concentration increases from 0.55 to 1.0 au (arbitrary unit) with the increase of RF power from 10 to 40 W. The concentration of C–O and C–O–C decreases from 1.0 to 0.5 au in the same range of RF power. The refraction index increased from 1.47 to 1.61 with the increase of RF power. The optical gap calculated from absorption coefficient decreased from 5.15 to 3.35 eV with the increase of power. Due to its optical and hydrophilic characteristics these films can be applied, for instance, as glass lens coatings for ophthalmic applications.  相似文献   

4.
Nanostructures with well-defined shape and highly monodisperse size were fabricated from model stilbazolium-like dyes with specific molecular structural and conformational characteristics. With the help of absorption and fluorescence optical spectroscopy, the correlated spectroscopy (COSY) and two- dimensional nuclear Overhauser effect spectroscopy (2D NOESY) techniques, along with X-ray diffraction (XRD) measurement, distinctively different aggregation processes of the model molecules are demonstrated. For model dye molecule with linear donor–π system–acceptor (D–π–A) structure, strong D–A pair, and planar conformation, specific intermolecular interaction was identified and special crystal structures as well as spectral properties were observed. For model dye molecules bearing nonlinear D–π–A–π–D structure, weak D–A pair but actual amphiphilic characteristics, a special aggregation process was confirmed and a focused size distribution of the produced nanostructures was obtained.  相似文献   

5.
We produced carbon nanotubes (CNTs) by pyrolysis of a composite film of poly (vinyl alcohol) (PVA) with fly ash (FA) at 500°C for 10 min under nitrogen. The composite films were prepared by a suspension of PVA and FA in deionized water and cast onto glass petri dishes. The morphologies of the CNTs were observed in the images of scanning and transmission electron microscopy, showing different types of structures, e.g. whiskers, branches, ropes and graphene sheets. The widths of the CNTs measured varied in the range 18–80 nm. X-ray photoelectron spectroscopy analysis showed five types of carbon binding peaks, C–C/C–H (∼77%), C–O–H (∼9%), –C–O–C (∼5%), C=O (∼5%) and –O–C=O (∼3%). From an image of a broken CNT, a mechanism was proposed for the formation of CNTs. The CNTs grown on FA surfaces have potential for the fabrication of high-strength composite materials with polymer and metal.  相似文献   

6.
We extend our previous treatment of the p cross section based on Gribov's hypothesis to the case of photon–photon scattering. With the aid of two parameters, determined from the experimental data, we separate the interactions into two categories corresponding to short (“soft”) and long (“hard”) distance processes. The photon–photon cross section thus receives contributions from three sectors, soft–soft, hard–hard and hard–soft. The additive quark model is used to describe the soft–soft sector, pQCD the hard–hard sector, while the hard–soft sector is determined by relating it to the system. We calculate and display the behaviour of the total photon–photon cross section and its various components and polarizations for different values of energy and virtuality of the two photons, and discuss the significance of our results. Received: 12 January 2000 / Published online: 6 April 2000  相似文献   

7.
The interfacial bonding and mixing between evaporated aluminum and a vapor deposited Teflon AF (abbreviated to AF) film have been investigated with X-ray photoelectron spectroscopy. Graphite carbon (C–C), and aluminum carbide (Al–C), oxide (Al–O–C) and fluoride (Al–F) are formed when aluminum atoms are deposited on to the AF film. With increasing deposition of aluminum, the concentrations of these newly formed components increase gradually. Moreover, in situ annealing results in remarkable increases in the C–C, Al–C, Al–O–C and Al–F configurations and a decrease in metallic aluminum. No significant diffusion of aluminum into the AF film was observed during the annealing. The Al compounds form a layer at the Al/AF interface that acts as an adhesion promoter and diffusion barrier. Received: 21 October 2002 / Accepted: 22 October 2002 / Published online: 15 January 2003 RID="*" ID="*"Corresponding author. Fax: +49-431/880-6229, E-mail: sjding@yahoo.com  相似文献   

8.
The 3 keV O2+\mathrm{O}_{2}^{+} reactive ion beam mixing of Cr/X interfaces (X=Al or Si) has been used to synthesize Cr-based mixed oxide thin films. The kinetics of growth, composition, and electronic structure of those films has been studied using X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet photoelectron spectroscopy, and factor analysis. Initially, for low ion doses, Cr2O3 species are formed. Later, with increasing the ion dose, Cr2O3 species are first transformed into Cr3+–O–X species, and subsequently, those Cr3+–O–X species are transformed into Cr6+–O–X species. This sequential transformation, Cr2O3→Cr3+–O–X→Cr6+–O–X, is accompanied by a slight increase of the oxygen concentration and a decrease of the Cr/X ratio in the films formed leading to the synthesis of custom designed Cr-based mixed oxides. The changes observed in the valence band and Auger parameters further support the formation of Cr–X mixed oxide species. Angle resolved X-ray photoelectron spectroscopy shows that for low ion doses, when only Cr2O3 and Cr3+–O–X species coexist, Cr3+–O–X species are located nearer the surface than Cr2O3 species, whereas for higher ion doses, when only Cr3+–O–X and Cr6+–O–X species coexist, the Cr6+–O–X species are those located nearer the surface.  相似文献   

9.
Nonlinear optical properties of photonic crystal heterostructures with embedded n–i–p–i superlattices are investigated. Self-consistent calculations of the transmission and reflection spectra near the defect mode are performed using the transfer-matrix method and taking into account the gain saturation. Analysis of features and output characteristics is carried out for one-dimensional photonic crystal heterostructure amplifiers in the GaAs–GaInP system having at the central part an active “defect” from doubled GaAs n–i–p–i crystal layers. The gain saturation in the active layers in the vicinity of the defect changes the index contrast of the photonic structure and makes worse the emission at the defect mode. Spectral bistability effect, which can be exhibited in photonic crystal heterostructure amplifiers, is predicted and the hysteresis loop and other attending phenomena are described. The bistability behavior and modulation response efficiency demonstrate the potential possibilities of the photonic crystal heterostructures with n–i–p–i layers as high-speed optical amplifiers and switches.   相似文献   

10.
Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.  相似文献   

11.
In this paper, we have studied the geometry of the five-dimensional black hole solutions in (a) Einstein–Yang–Mills–Gauss–Bonnet theory and (b) Einstein–Maxwell–Gauss–Bonnet theory with a cosmological constant for spherically symmetric space time. Formulating the Ruppeiner metric, we have examined the possible phase transition for both the metrics. It is found that depending on some restrictions phase transition is possible for the black holes. Also for Λ = 0 in Einstein–Gauss–Bonnet black hole, the Ruppeiner metric becomes flat and hence the black hole becomes a stable one.  相似文献   

12.
We analyzed the whole-body distribution of 14C–ADP-labeled silica nanoparticles (14C–ADP–SiO2 nanoparticles) and submicron particles (14C–ADP–SiO2 submicron particles) after intravenous injection into ICR mice. The 14C–ADP–SiO2 nanoparticles and submicron particles were synthesized before the injection and the particle size was 19.6 and 130 nm, respectively. Similarly, the shape was spherical and the crystallinity was amorphous. After the synthesis, we injected mice with the 14C–ADP–SiO2 nanoparticles or the 14C–ADP–SiO2 submicron particles and dissected tissues after 1, 2, 4, 8 and 24 h. The radioactivity in the tissues was measured with a liquid scintillation counter. As a result, the retention percentage in bone, skin, lymph nodes, and the digestive mixture was at least twofold higher in the 14C–ADP–SiO2 nanoparticles-exposed mice, whereas the retention percentage in the kidney was statistically higher in the 14C–ADP–SiO2 submicron particles-exposed mice. Both types of 14C–ADP–SiO2 particles mainly translocated to the muscle, bone, skin, and liver, but hardly translocated to the brain and olfactory bulb. Furthermore, the 14C–ADP–SiO2 nanoparticles had a higher retention percentage (62.4 %) in the entire body at 24-h post-injection than did the 14C–ADP–SiO2 submicron particles (50.7 %). Therefore, we suggested that the 14C–ADP–SiO2 nanoparticles might be more likely than the 14C–ADP–SiO2 submicron particles to be retained in the body, and consequently they might be gradually accumulated by chronic exposure.  相似文献   

13.
I provide a tour of Edinburgh focusing on famous contributors to the history of physics and related sciences, using them as a way to write about particular parts of Edinburgh. I proceed chronologically, from the seventeenth century to the Scottish Enlightenment of the eighteenth century and on to the nineteenth and twentieth centuries. Among the notable individuals I discuss are John Napier (1550–1617), James Gregory (1638–1675), George Sinclair (ca. 1625–1696), Colin Maclaurin (1698–1746), Joseph Black (1728–1799), James Hutton (1726–1797), John James Waterston (1811–1883), William J. Macquorn Rankine (1820–1872), David Brewster (1781–1868), Peter Guthrie Tait (1831–1901), James Clerk Maxwell (1831–1879), Charles Piazzi Smyth (1819–1900), Charles Glover Barkla (1877–1944), Max Born (1882–1970), Edward Victor Appleton (1892–1965), Charles T.R. Wilson (1869–1959), and Peter Higgs (b. 1929).  相似文献   

14.
We find large classes of non-asymptotically flat Einstein–Yang–Mills–Dilaton and Einstein–Yang–Mills–Born–Infeld–Dilaton black holes in N-dimensional spherically symmetric spacetime expressed in terms of the quasilocal mass. Extension of the dilatonic YM solution to N-dimensions has been possible by employing the generalized Wu-Yang ansatz. Another metric ansatz, which aided in finding exact solutions is the functional dependence of the radius function on the dilaton field. These classes of black holes are stable against linear radial perturbations. In the limit of vanishing dilaton we obtain Bertotti–Robinson type metrics with the topology of AdS 2×S N–2. Since connection can be established between dilaton and a scalar field of Brans–Dicke type we obtain black hole solutions also in the Brans–Dicke–Yang–Mills theory as well.  相似文献   

15.
We investigate the thermodynamic properties of 5D static and spherically symmetric black holes in (i) Einstein–Maxwell–Gauss–Bonnet theory, (ii) Einstein–Maxwell–Gauss–Bonnet theory with negative cosmological constant, and in (iii) Einstein–Yang–Mills–Gauss–Bonnet theory. To formulate the thermodynamics of these black holes we use the Bekenstein–Hawking entropy relation and, alternatively, a modified entropy formula which follows from the first law of thermodynamics of black holes. The results of both approaches are not equivalent. Using the formalism of geometrothermodynamics, we introduce in the manifold of equilibrium states a Legendre invariant metric for each black hole and for each thermodynamic approach, and show that the thermodynamic curvature diverges at those points where the temperature vanishes and the heat capacity diverges.  相似文献   

16.
We have synthesized a folic acid–europium complex conjugate which shows promise for biomedical applications. We have studied the absorption spectra, the luminescence spectra, and the luminescence excitation spectra of folic acid–spacer–amino-substituted phenanthroline and folic acid–spacer–europium chelate conjugates, and also of the individual components of the synthesized triads. All the spectral luminescence data obtained confirm that a folic acid–europium complex conjugate is fogrmed. Binding of the synthesized conjugate to a folate receptor on HeLa tumor cells is demonstrated.  相似文献   

17.
Three-layered ZnO/Ag–Ti/ZnO structures were prepared using both the sol-gel technique and DC magnetron sputtering. This study focuses on the electrical and optical properties of the ZnO/Ag–Ti/ZnO multilayers with various thicknesses of the Ag–Ti layer. The ZnO thin film prepared by the sol–gel method was dried at 300°C for 3 minutes, and a fixed thickness of 20 nm was obtained. The thickness of the Ag–Ti thin film was controlled by varying the sputtering time. The Ag–Ti layer substantially reduced the electrical resistivity of the sol–gel-sprayed ZnO thin films. The sheet resistance of the Ag–Ti layer decreased dramatically and then became steady beyond a sputtering time of 60 s. The sputtering time of Ag–Ti thin film deposition was determined to be 60 s, taking into account the optical transmittance. Consequently, the transmittance of the ZnO/Ag–Ti/ZnO multilayer films was 71% at 550 nm and 60% at 350 nm. The sheet resistance was 4.2 Ω/sq.  相似文献   

18.
Summary Particle size distribution in the urban plume of the city of Valladolid was measured with a laser spectrometer during a one-month sampling campaign carried out over the winter period. Experimental results of the number of particles covering the 0.10–0.12, 0.12–0.15, 0.15–0.20, 0.20–0.25, 0.25–0.35 and 0.35–0.45 μm ranges are presented. Using spectral analysis as a statistical technique, two 12 h and 24 h significant peaks are obtained for each size range. In order to interpret the meaning of both peaks, the hourly particle size, traffic and nitrogen oxide patterns are compared. The contribution of domestic heating, traffic exhaust emissions and the strong influence of the gas-to-particle conversion processes mainly within the 0.10–0.15 μm range, may be inferred.  相似文献   

19.
Abstact: Three variants of mean field methods for atomic and nuclear reactions are compared with respect to both conception and applicability: The time–dependent Hartree–Fock method solves the equation of motion for a Hermitian density operator as initial value problem, with the colliding fragments in a continuum state of relative motion. With no specification of the final state, the method is restricted to inclusive reactions. The time–dependent mean field method, as developed by Kerman, Levit and Negele as well as by Reinhardt, calculates the density for specific transitions and thus applies to exclusive reactions. It uses the Hubbard–Stratonovich transformation to express the full time-development operator with two–body interactions as functional integral over one–body densities. In stationary phase approximation and with Slater determinants as initial and final states, it defines non–Hermitian, time–dependent mean field equations to be solved self–consistently as boundary value problem in time. The time–independent mean field method of Giraud and Nagarajan is based on a Schwinger–type variational principle for the resolvent. It leads to a set of inhomogeneous, non-Hermitian equations of Hartree–Fock type to be solved for given total energy. All information about initial and final channels is contained in the inhomogeneities, hence the method is designed for exclusive reactions. A direct link is established between the time–dependent and time–independent versions. Their relation is non–trivial due to the non–linear nature of mean field methods. Received: 7 January 1998 / Revised version: 20 April 1998  相似文献   

20.
We study the influence of the scheme for the correction for spurious center–of–mass motion on the fit of effective interactions for self–consistent nuclear mean–field calculations. We find that interactions with very simple center–of–mass correction have significantly larger surface coefficients than interactions for which the center–of–mass correction was calculated for the actual many–body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center–of–mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei. Received: 6 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号