首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自振荡高分子是基于Belousov-Zhabotinsky自振荡反应(BZ反应)设计的一类新型智能高分子,其物理、化学性质可以在相对封闭且无外界刺激的BZ反应溶液中发生自主、可逆和循环的变化。本文从概念、设计原理、设计方法及潜在应用4个方面系统介绍了自振荡高分子,其中重点结合自振荡高分子的化学结构设计与物理结构设计介绍了这一领域的研究进展:详细归纳了目前已成功制备的具有不同化学结构或物理结构的自振荡高分子或凝胶,阐述了不同的设计方法的优点、存在的问题及可能的解决办法,最后介绍了自振荡高分子在自动运输智能表面、凝胶机器人、自主转动马达等方面的设计实例,并分析了该领域面临的问题及今后发展趋势。  相似文献   

2.
We measure cross-diffusion coefficients in a five-component system, an aerosol OT (AOT) water-in-oil microemulsion loaded with two constituents of the Belousov-Zhabotinsky (BZ) reaction (H(2) O/AOT/BZ1/BZ2/octane). The species BZ1 is either NaBr, an inhibitor of the BZ reaction, or ferroin, a catalyst for the reaction. As species BZ2, we choose Br(2) , an intermediate in the reaction. The cross-diffusion coefficients between BZ1 and BZ2 are found to be negative, which can be understood in terms of complexation between these species. Using a four-variable model for the BZ reaction, we find that the cross-diffusion coefficients measured here can lead to a noticeable shift in the onset of Turing instability in the BZ-AOT system.  相似文献   

3.
The propagation of chemical waves in the photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated using an excitable field in the shape of a circular ring or figure "8" that was drawn by computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. For a chemical wave in a circular reaction field, the shape of the chemical wave was investigated depending on the ratio of the inner and outer radii. When two chemical waves were generated on a field shaped like a figure "8" (one chemical wave in each circle) as the initial condition, the location of the collision of the waves either was constant or alternated depending on the degree of overlap of the two circular rings. These experimental results were analyzed on the basis of a geometrical discussion and theoretically reproduced on the basis of a reaction-diffusion system using a modified Oregonator model. These results suggest that the photosensitive BZ reaction may be useful for creating spatio-temporal patterns depending on the geometric arrangement of excitable fields.  相似文献   

4.
A method to prepare a uniform thin layer of a batch Belousov-Zhabotinsky (BZ) reaction under oxygen-free conditions for the study of an isolated spiral wave is presented. After a first layer of gel soaked with the BZ solution has been delivered into the reactor, a single spiral wave was initiated, and finally the remaining reactor volume was filled with gel and BZ medium. The completely filled reactor is sealed gas-tightly, yielding oxygen-free, and thus more controlled, reaction conditions. A systematic study of the behaviour of an isolated spiral wave in a ferroin-catalyzed BZ reaction under batch conditions has been performed. Recipes for BZ media that support a slowly rotating meandering spiral were developed. In cases of extremely low excitability (i.e., relative large stimuli are required to induce a propagating wave), the number of petals in the trajectory of a spiral tip decreased due to aging of the reaction system. Since oxygen-free conditions are necessary for the study of the dynamics in three-dimensional excitable media, and the wave velocities of a spiral are sufficiently low, the developed chemical recipes are suitable for studies of the behaviour of scroll waves in three-dimensional systems by optical tomography.  相似文献   

5.
The photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated on a circular ring, which was drawn using computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. Under the initial conditions, a chemical wave propagated with a constant velocity on the black ring under a bright background. When the background was rapidly changed to dark, coexistence of the oscillation on part of the ring and propagation of the chemical wave on the other part was observed. These experimental results are discussed in relation to the nature of the photosensitive BZ reaction and theoretically reproduced based on a reaction-diffusion system using the modified Oregonator model.  相似文献   

6.
The propagation of chemical waves in the photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated using an excitable field composed of two rings in slight contact, which were drawn using computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. When the initial phase difference between the two chemical waves in the individual rings was smaller than a critical value, this initial value was maintained after collision of the chemical waves. However, when the initial phase difference was larger than this critical value, the phase difference converged to the same value after the second collision. The critical value increased with an increase in the thickness of the rings. These experimental results on the geometry of the excitable field are discussed in relation to the nature of chemical wave propagation. These results suggest that the photosensitive BZ reaction may be useful for creating spatiotemporal patterns that depend on the geometric arrangement of excitable fields.  相似文献   

7.
Temporal evolution of a new Mn(II) catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator with catechol (1.2-dihydroxybenzene) as organic substrate is reported within narrow range of concentrations of initial reagents at 30°C. After optimizing the oscillation parameters the system was perturbed with the antioxidants like ascorbic acid and inosine. It is found that ascorbic acid acts as co-substrate within certain concentration limit, whereas inosine acts as a quencher of oscillations. Addition of ascorbic acid to the BZ system decreases induction time thus acting synergistically to help the reaction to enter quickly into the oscillatory regime. A good linear dependence of induction time on the concentration of ascorbic acid (R 2 = 0.9948) and inosine (R 2 = 0.955) is reported. Inosine has been found to increase the induction time and quench the oscillations. It is mentioned that the magnitude of induction time decreases to a greater extent with ascorbic acid as compared to the magnitude of its increase with the same concentration of inosine. This is pointing to the fact that ascorbic acid is stronger antioxidant than inosine as depicted by their interaction with catechol-based BZ chemical oscillator. Temporal evolution of the BZ reaction with the injection of antioxidants at different stages of reaction is also reported.  相似文献   

8.
We report the temperature effect on the propagation of excitable traveling waves in a quasi-two-dimensional Belousov-Zhabotinsky reaction-diffusion system. The onset of excitable waves as a function of the sulfuric acid concentration and temperature is identified, on which the sulfuric acid concentration exhibits an Arrhenius dependence on temperature. On the basis of this experimental data, the activation energy of the self-catalyzed reaction in the Oregonator model is estimated to be 83-113 kJ/mol, which is further supported by our numerical simulations. The estimation proceeds without analyzing detailed reaction steps but rather through observing the global dynamic behaviors in the BZ reaction. For a supplement, the wave propagation velocities are calculated based on our results and compared with the experimental observations.  相似文献   

9.
Gao J  Yang H  Liu X  Ren J  Lu X  Hou J  Kang J 《Talanta》2001,55(1):99-107
A new analytical method for the determination of ascorbic acid by the perturbation caused by different amounts of ascorbic acid on the BZ oscillating chemical system involving the Ce(IV)-catalyzed reaction between potassium bromate and malonic acid in a acidic medium is proposed. The method relies on the linear relationship between the change in the oscillation amplitude of the chemical system and the concentration of ascorbic acid, which is in this work exposed for the first time. The calibration curve is linearly proportional to the concentration of ascorbic acid over the range 3.5x10(-6)-4.7x10(-4) M, with the regression coefficient is 0.9975. Two different methodologies were used to address the determination. Some aspects of the potential mechanism of action of ascorbic acid on the BZ oscillating chemical system are discussed in detail.  相似文献   

10.
Self-oscillation for the microgel particles ( approximately 200 nm in diameter) was studied by changing initial substrate concentrations (i.e., malonic acid, sodium bromate, and nitric acid) of the Belousov-Zhabotinsky (BZ) reaction that is used for chemical energy for the self-oscillation. The cross-linked microgels are composed of N-isopropylacrylamide and ruthenium tris(2,2'-bipyridine), Ru(bpy) 3, which is a catalyst for the BZ reaction. Comparing with the homogeneous, stirred solution of the bulk solution for the BZ reaction, swelling/deswelling oscillation of the microgels showed longer induction period, different dependence of initial substrate concentrations on oscillation period, and different oscillation rhythm. The change in oscillation for the microgels can be understood by considering the microgel network effect.  相似文献   

11.
Inspired by the biological growth that takes place in time‐varying external fields such as light or temperature, we design an open reaction‐diffusion system in order to investigate growth dynamics. The system is composed of the Belousov–Zhabotinsky (BZ) oscillatory reaction coupled with a copolymer gel consisting of NIPAAm and a photosensitive ruthenium catalyst. When subject to a unidirectional flow of the BZ reactants, the system displays groups of chemical waves whose structure depends upon the period and amplitude of illumination. Simulations of a modified six‐variable Oregonator model exhibit all the complex wave groups found in our experiments. Studying this growth structure may aid in understanding the influence of periodic environmental variation on complex growth processes in living systems.  相似文献   

12.
The ferroin-catalyzed Belousov-Zhabotinsky(BZ) reaction,the oxidation of malonic acid by acidic bromate,is the most commonly investigated chemical system for understanding spatial pattern forma-tion. Various oscillatory behaviors were found from such as mixed-mode and simple period-doubling oscillations and chaos on both Pt electrode and Br-ISE at high flow rates to mixed-mode oscillations on Br-ISE only at low flow rates. The complex dynamic behaviors were qualitatively reproduced with a two-cycle coupling model proposed initially by Gy?rgyi and Field. This investigation offered a proper medium for studying pattern formation under complex temporal dynamics. In addition,it also shows that complex oscillations and chaos in the BZ reaction can be extended to other bromate-driven nonlinear reaction systems with different metal catalysts.  相似文献   

13.
The ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction, the oxidation of malonic acid by acidic bromate, is the most commonly investigated chemical system for understanding spatial pattern formation. Various oscillatory behaviors were found from such as mixed-mode and simple period-doubling oscillations and chaos on both Pt electrode and Br-ISE at high flow rates to mixed-mode oscillations on Br-ISE only at Iow flow rates. The complex dynamic behaviors were qualitatively reproduced with a two-cycle coupling model proposed initially by Gy(o)rgyi and Field. This investigation offered a proper medium for studying pattern formation under complex temporal dynamics. In addition, it also shows that complex oscillations and chaos in the BZ reaction can be extended to other bromate-driven nonlinear reaction systems with different metal catalysts.  相似文献   

14.
作为研究非线性时空动力学最理想的化学反应体系之一,三联(2,2'-联吡啶)钌(Ⅱ)(Ru(bpy)32+)为催化剂的Belousov-Zhabotinsky (BZ)振荡反应具有独特的光敏特性并能呈现丰富的时空动力学行为。研究光控BZ反应有助于我们对一系列物理、化学和生命体系中复杂动力学现象的理解。本文综述了不同实验条件下光效应对钌催化BZ反应均相复杂振荡和空间反应扩散化学波的影响, 以及光响应BZ反应与软物质耦合体系的复杂动力学行为,在此基础上介绍光抑制和光诱导反应机理和模型。对光控BZ反应体系存在的问题和发展方向进行了探讨。  相似文献   

15.
The photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated on a double rectangular field composed of two rectangular routes, which was drawn using computer software and then projected using a liquid-crystal projector on a filter paper soaked with BZ solution. When two chemical waves were generated on the rectangular routes as the initial condition, the nature of the collision of the waves could be theoretically classified into four categories depending on the initial phase difference between the two waves and the aspect ratio of the rectangular routes. The experimental results were consistent with the features of the theoretical prediction. These results suggest that the feature of wave propagation characteristically develops depending on the geometry of the excitable fields.  相似文献   

16.
We report the successful use of Ru(II)(terpy)(2) (1, terpy = 2,2':6',2'-terpyridine) as a catalyst in the Belousov-Zhabotinsky (BZ) oscillating chemical reaction. We also examine several additional Ru(II) complexes, Ru(II)(bipy)(2)(L')(2) (2, L' = 4-pyridinecarboxylic acid; bipy = 2,2'-bipyridine) and Ru(II)(bipy)(2)(L') (3, L' = 4,4'-dicarboxy-2,2'-bipy; 4, L' = N-allyl-4'-methyl-[2,2'-bipy]-4-carboxamide; 5, L' = bipy), for catalyzing the BZ reaction. While 2 is unable to trigger BZ oscillations, probably because of the rapid loss of L' in a BZ solution, the other bipyridine-based Ru(II)-complexes can catalyze the BZ reaction, although their catalytic activity is adversely affected by slow ligand substitution in a BZ solution. Nevertheless, the successfully tested Ru(II)(terpy)(2) and Ru(II)(bipy)(2)(L') catalysts may provide useful building blocks for complex functional macromolecules.  相似文献   

17.
The authors model wave propagation in swollen, chemoresponsive polymer gels that are undergoing the oscillatory Belousov-Zhabotinsky (BZ) reaction. To carry out this study, they first modify the Oregonator model for BZ reactions in simple solutions to include the effect of the polymer on the reaction kinetics. They then describe the gel dynamics through the framework of the two-fluid model. The polymer-solvent interactions that are introduced through the BZ reaction are captured through a coupling term, which is added to the Flory-Huggins model for polymer-solvent mixtures. The resulting theoretical model is then used to develop the gel lattice spring model (gLSM), which is a computationally efficient approach for simulating large-scale, two-dimensional (2D) deformations and chemical reactions within a swollen polymer network. The 2D calculations allow the authors to probe not only volume changes but also changes in the sample's shape. Using the gLSM, they determine the pattern formation and shape changes in 2D rectangular BZ gels that are anchored to a solid wall. They demonstrate that the dynamic patterns depend on whether the gel is expanded or contracted near the wall, and on the sample's dimensions. Finally, they isolate a scenario where the detachment of the gel from the wall leads to macroscopic motion of the entire sample.  相似文献   

18.
A chemomechanical actuator utilizing a reaction-diffusion wave across gap junction was constructed toward a novel mircoconveyer by micropatterned self-oscillating gel array. Unidirectional propagation of the chemical wave of the Belousov-Zhabotinsky (BZ) reaction was induced on gel arrays. In the case of using a triangle-shaped gel as an element of the array, the chemical wave propagated from the corner side of the triangle gel to the plane side of the other gel (C-to-P) across the gap junction, whereas it propagated from the plane side to the corner side (P-to-C) in the case of the pentagonal gel array. Numerical analysis based on the Keener-Tyson model was done for understanding the mechanism of unidirectional propagation in triangle and pentagonal gel arrays. The swelling and deswelling changes of the gels followed the unidirectional propagation of the chemical wave.  相似文献   

19.
Nonlinear chemistry has been a focus in recent years1. Many chemical oscillating reactions have been found and studied intensively, such as Belousov-Zhabotinskii (BZ) reaction2, Briggs-Rauscher reaction3, peroxidase-oxidase4, Bray-Liebhafsky reaction5 and…  相似文献   

20.
As a novel biomimetic polymer gel, we have been studying polymer gel with an autonomous self-oscillating function since it was firstly reported in 1996. For developing the polymer gels, we utilized an oscillating chemical reaction, called the Belousov?CZhabotinsky (BZ) reaction, which is recognized as a chemical model for understanding several autonomous phenomena in biological systems. The self-oscillating polymer gel is composed of a poly(N-isopropylacrylamide) network in which the metal catalyst for the BZ reaction is covalently immobilized. Under the coexistence of the reactants, the polymer undergoes spontaneous swelling?Cdeswelling changes (in the case of gel) or cyclic soluble?Cinsoluble changes (in the case of uncross-linked polymer) without any on?Coff switching of external stimuli. Several kinds of functional material systems utilizing the self-oscillating polymer and gel such as biomimetic actuators, mass transport surface, etc. are expected. Here, these recent progress on the self-oscillating polymer and gels and the design of functional material systems are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号