首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Electroanalysis》2006,18(6):613-620
The interaction of malachite green (MG) with double‐stranded DNA (dsDNA) in pH 7.0 Britton–Robinson (B–R) buffer solution was investigated by electrochemical and spectrophotometric methods. Within the potential scan range of ?1.0 to +1.5 V (vs. SCE), MG has two oxidative peaks at 0.547 V and 0.833 V and one reductive peak at 0.362 V on cyclic voltammogram at the scan rate of 0.20 V/s. After the addition of dsDNA into the MG solution, the oxidative peak current at 0.547 V decreases obviously. The electrochemical parameters, such as the charge transfer coefficient (α), the surface reaction rate constant (ks) and the diffusion coefficient (D), were calculated and compared between in the absence and presence of dsDNA. The results show that these parameters of MG after adding dsDNA have greatly changed, which indicates that an electrochemical active complex was formed. The interaction mechanisms of MG with dsDNA are discussed in some details from the electrochemistry and UV‐vis spectrophotometry. The reduction of the peak current of MG after adding dsDNA was further used for the quantification of dsDNA by differential pulse voltammetry (DPV). The linear range for dsDNA is in the range of 10.0–100.0 μg/mL with the linear regression equation as Δip (μA)=0.065+0.0096 C (μg/mL) and the detection limit of 6.0 μg/mL (3σ). The influences of coexisting substances were investigated and artificial samples were determined with satisfactory results.  相似文献   

2.
Carboxylic group-functionalized carbon nanotubes (c-CNT) were modified on the surface of carbon paste electrode to obtain a conducting precursor film. Positively charged poly-l-lysine (pLys) and negatively charged double-stranded DNA (dsDNA) were alternately adsorbed on the c-CNT-modified electrode, forming (pLys/dsDNA) n layer-by-layer (LBL) films. Cyclic voltammetry and electrochemical impedance spectroscopy of the electroactive probe [Fe(CN)6]3−/4− could give the valuable dynamic information of multilayer films growth. The oxidative DNA damage induced by cadmium ion (Cd2+) in the LBL multilayer films was studied by differential pulse voltammetry (DPV) with methylene violet (MV) as the intercalation redox probe. The electrochemical signals of MV on the multilayer films were effectively amplified via LBL technology. The specific intercalation of MV into dsDNA base pairs and the amplified electrochemical response of MV, combined with the unique feature of loading reversibility of MV in the DNA layer-by-layer films, made the difference in DPV response between the intact, and damaged dsDNA films become pronounced. This biosensor exhibited that the (pLys/dsDNA) n films could be utilized for investigations of DNA damage.  相似文献   

3.
The electrochemical behavior of the ofloxacin–copper complex, Cu(II)L2, at a mercury electrode, and the interaction of DNA with the complex have been investigated. The experiments indicate that the electrode reaction of Cu(II)L2 is an irreversible surface electrochemical reaction and that the reactant is of adsorbed character. In the presence of DNA, the formation of the electrochemically non-active complexes Cu(II)L2-DNA, results in the decrease of the peak current of Cu(II)L2. Based on the electrochemical behavior of the Cu(II)L2 with DNA, binding by electrostatic interaction is suggested and a new method for determining nucleic acid is proposed. Under the optimum conditions, the decrease of the peak current is in proportional to the concentration of nucleic acids in the range from 3 × 10−8 to 3 × 10−6 g · mL−1 for calf thymus DNA, from 1.6 × 10−8 to 9.0 × 10−7 g · mL−1 for fish sperm DNA, and from 3.3 × 10−8 to 5.5 × 10−7 g · mL−1 for yeast RNA. The detection limits are 3.3 × 10−9, 6.7 × 10−9 and 8.0 × 10−9 g · mL−1, respectively. The method exhibits good recovery and high sensitivity in synthetic samples and in real samples.  相似文献   

4.
A method is presented for the electroanalytical characterization of interactions of dsDNA with a drug, under conditions that both agents are dissolved in the phosphate buffer solution and both are electroactive. Normal pulse, square wave, differential pulse, and cyclic voltammetries were employed in the measurements of the drug and dsDNA oxidation signals at carbon electrodes. UV–Vis spectroscopy was used as a non-electrochemical method to support the electroanalytical data. An anticancer drug, C-1311 (5-diethylaminoethyl-amino-8-hydroxyimidazoacridinone), has been selected for the examination. Normal pulse voltammetry was particularly useful in showing that under the conditions employed neither dsDNA nor the drug were adsorbed at the electrode surface. Necessary conditions for the appearance of the well-defined dsDNA voltammetric signal (guanine peak) are: rigorous chemical and biological purity in the cell and appropriate purity of DNA. An analysis of the obtained results confirmed that there were two modes of interaction between C-1311 and dsDNA: by intercalation and electrostatically. In the presence of excess NaCl the electrostatic interactions deteriorate. The binding constants (K 1 and K 2, respectively) and the number (n) of nucleic base pairs (bp) and the number (m) of phosphate groups (pg) interacting with one molecule of drug have been determined. For strong interactions (intercalation) the values of the binding constant, K 1, and the binding-site size, n, equal 3.7 × 104 M−1 and 2.1, respectively. For the weak electrostatic interactions the K 2 and m parameters equal 0.28 × 104 M−1 and 4.7. The intercalation process is rather slow and its rate (the conditions of pseudo-first-order reaction) was estimated to equal 7 × 10−4 s−1. The possibility of independent determination of both interacting agents was very useful in the study. Figure Intercalation of C-1311 into a dsDNA fragment  相似文献   

5.
《Analytical letters》2012,45(1):33-45
Abstract

The electrochemical behaviors of the interaction of pyronine B (PB) with DNA were investigated on the mercury drop working electrode. In pH 2.0 Britton‐Robinson (B‐R) buffer solution, PB can be easily reduced on the mercury electrode and had a well‐defined voltammetric reductive wave at ?0.86 V (vs. saturated calomelelectrode, SDE). On the addition of DNA into the PB solution, the reductive peak current of PB decreased with the positive movement of the peak potential and without the appearance of new peaks. The result showed that a new supramolecular complex was formed via intercalation of PB with DNA, which can't be reduced on the Hg electrode. The conditions of interaction and the electrochemical detection were carefully investigated. Under the optimal conditions the decrease of peak current was proportional to the concentration of DNA in the range of 1.0~30.0 mg/L with the linear regression equation as ΔIp″(nA)=51.84C (mg/L)–94.97 (n=13, γ=0.993) and the detection limit was 0.90 mg/L. The interaction mechanism was discussed with the aggregation of DNA‐PB supramolecular complex and the stoichiometry of the supramolecular complex was calculated with the binding number as 3 and the binding constant as 1.61×1015.  相似文献   

6.
The electrochemical behavior of ciprofloxacin (CFX) and its interaction with the natural calf thymus DNA (ctDNA) is studied by using pulse difference voltammetry on a carbon electrode. CFX shows a well-defined oxidative peak at + 0.88 V. As a result of reaction with ctDNA,the oxidative peak of CFX decreased markedly. According to the electrochemical equation deduced in this paper, the binding constant of 1.36 × 105 (mol/L)−1 and the binding size of 1.94 (base pairs) of CFX with ctDNA were obtained by nonlinear fit analysis of the electrochemical data. The mechanism of the interaction was explored. __________ Translated from Journal of Zhejiang University (Science Edition), 2007, 34(3): 330–334 [译自: 浙江大学学报(自然科学版)]  相似文献   

7.
We used a carbon paste electrode modified with multi-walled carbon nanotubes as a working electrode and studied the electrochemical behavior of zirconium-alizarin red S complex on it. It was found that the modified electrode exhibited a significant catalytic effect toward the reduction of free alizarin red S and the complex. The second derivative linear scan voltammograms of the complex were recorded by a polarographic analyser from 0 to −1000 mV (vs. SCE), and it was found that the complex can be adsorbed on the surface of the modified electrode, yielding a peak at about −470 mV, corresponding to the reduction of alizarin red S in the complex. The linear range was found to be 2.0 × 10−11–8.0 × 10−7 mol L−1, and the detection limit was 1.0 × 10−11 mol L−1 (S/N = 3) for 3 min accumulation. The procedure was successfully applied to the determination of trace amounts of zirconium in the ore samples. Correspondence: Pei-Hong Deng, Department of Chemistry and Material Science, Hengyang Normal University, Hengyang Hunan 421008, P.R. China  相似文献   

8.
The electrochemical behaviors of metol on an ionic liquid N-butylpyridinium hexafluorophosphate modified carbon paste electrode (IL-CPE) were studied in this paper. The results indicated that a pair of well-defined quasi-reversible redox peaks of metol appeared with the decrease of overpotential and the increase of redox peak current, which was the characteristics of electrocatalytic oxidation. The electrocatalytic mechanism was discussed and the electrochemical parameters were calculated with results of the charge-transfer coefficient (α) as 0.45, the electrode reaction rate constant (k s) as 4.02 × 10−3 s−1, and the diffusion coefficient (D) as 6.35 × 10−5 cm2/s. Under the optimal conditions, the anodic peak current was linear with the metol concentration in the range of 5.0 × 10−6 ∼ 1.0 × 10−3 mol/L (n = 11, γ = 0.994) and the detection limit was estimated as 2.33 × 10−6 mol/L (3σ). The proposed method was successfully applied to determination of metol content in synthetic samples and photographic solutions.  相似文献   

9.
A new linear-sweep voltammetric assay of nucleic acids (NAs) based on their interaction with crystal violet (CV) is proposed. In a pH 3.5 Britton—Robinson (B-R) buffer solution, CV had an irreversible voltammetric reductive peak at −0.77 V and the peak current greatly decreased by the addition of NAs. Under the experimental conditions, the decrease in the peak current was used for the NAs assay 0.5–18.0 μg/mL of fish sperm DNA, 0.6–15.0 μg/mL of calf thymus DNA, and 0.8–12.0 μg/mL of yeast RNA. The detection limits (3σ) were 0.32, 0.47, and 0.61 μg/mL for fsDNA, ctDNA, and yRNA, respectively. The binding reaction can be completed after mixing DNA with CV within 10 min and the electrochemical response is stable for 2 h. There are seldom interferences in this method and three synthetic samples were analyzed with satisfactory results. The stoichiometry of the supramolecular complex with the binding number 3 and the binding constant 2.78 × 1014 is calculated using electrochemical data. The text was submitted by the authors in English.  相似文献   

10.
The interaction of gallocyanine (GC) with double‐stranded DNA (dsDNA) in pH 3.5 Tris‐HCl buffer solution was investigated by electrochemical methods and spectrophotometric methods as well. In the potential scan range of ‐0.25 ? +0.18 V(vs. SCE), GC had a couple of well‐defined redox peaks at ‐0.022 V and ‐0.069 V on a cyclic voltammogram at the scan rate of 100.0 mV/s, respectively. After the addition of dsDNA into the GC solution, the redox‐peak currents decreased obviously and the peak potentials shifted positively. The results demonstrated that GC binding to DNA was caused by intercalation. Electrochemical parameters such as the electron number (n), the charge transfer coefficient (α) and the electrochemical reaction standard rate constant (ks) were calculated and compared in the absence and presence of dsDNA. Almost unchanged values of the electrochemical parameters after adding dsDNA showed that non‐electroactive complexes were formed when GC interacted with DNA. The results indicated that the decrease of the redox‐peak currents was caused by the decrease of the free concentration of GC in the reaction solution. The binding constant and binding ratio were investigated by spectrophotometric methods. DNA concentration can be determined by the decrease of the peak current of GC. The linear range for dsDNA was in the range of 1.45 × 10?7 ? 1.45 × 10?6mol/Land 1.45 × 10?6 ? 1.45 × 10?5 mol/L, respectively with the linear regression equation as ΔiP (10?7 A) = 0.037 + 0.018C (10?7mol/L), and ΔiP (10?7 A) = 0.25 + 0.041C (10?6mol/L), respectively, and the detection limit (3σ) was 1.13 × 10?7 mol/L.  相似文献   

11.
The electrochemical behavior of calcein (CA) has been investigated by using a conductive carbon black paste electrode (CCBPE) as working electrode. It exhibits a single well‐defined redox peak in phosphate buffered saline in the range of pH 5.5–8.0, which attributes to the irreversible oxidation with 2 electrons and 2 protons participation. Under the optimized analytical conditions, the proposed linear sweep voltammetry (LSV) method allows the determination of CA in a linear concentration range of 0.64–9.60 µM, with a limit of detection of 0.32 µM. Further, the interaction between CA and DNA were studied by voltammetric and spectrometric methods. Both studies have shown that CA can bind to DNA by the intercalation binding mode. Under the present experimental condition, the binding constant β of CA and dsDNA is 1.10×107. Meanwhile, in the loop‐mediated isothermal amplification (LAMP) reaction mixture there is obvious interaction between CA and dsDNA, resulting in a nonignorable decrease of the indicating sensitivity.  相似文献   

12.
The electrocatalytic oxidation of quinine sulfate (QS) was investigated at a glassy carbon electrode, modified by a gel containing multiwall carbon nanotubes (MWCNTs) and room-temperature ionic liquid of 1-Butyl-3-methylimidazolium hexafluorophate (BMIMPF6) in 0.10 M of phosphate buffer solution (PBS, pH 6.8). It was found that an irreversible anodic oxidation peak of QS with E pa as 0.99 V appeared at MWCNTs-RTIL/glassy carbon electrode (GCE). The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α), diffusion coefficient (D), and electrode reaction rate constant (k f) of QS were found to be 0.87, 7.89 × 10−3 cm2⋅s−1 and 3.43 × 10−2 s−1, respectively. Under optimized conditions, linear calibration curves were obtained over the QS concentration range 3.0 × 10−6 to 1.0 × 10−4 M by square wave voltammetry, and the detection limit was found to be 0.44 μM based on the signal-to-noise ratio of 3. In addition, the novel MWCNTs-RTIL/GCE was characterized by the electrochemical impedance spectroscopy and the proposed method has been successfully applied in the electrochemical quantitative determination of quinine content in commercial injection samples and the determination results could meet the requirement.  相似文献   

13.
A multi-wall carbon nanotubes (MWNTs)-Nafion film-coated glassy carbon electrode (GCE) was fabricated and the electrochemical behavior of ofloxacin on the MWNTs-Nafion film-coated GCE were investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The oxidation peak current of ofloxacin increased significantly on the MWNTs-Nafion film modified GCE compared with that using a bare GCE. This nano-structured film electrode exhibited excellent enhancement effects on the electrochemical oxidation of ofloxacin. A well-defined oxidation peak attributed to ofloxacin was observed at 0.97 V and was applied to the determination of ofloxacin. The oxidation peak current was proportional to ofloxacin concentration in the ranges 1.0 × 10−8 to 1.0 × 10−6 mol/L and 1.0 × 10−6 to 2.0 × 10−5 mol/L. A detection limit of 8.0 × 10−9 mol/L was obtained for 400 s accumulation at open circuit (S/N = 3). This method for the detection of ofloxacin in human urine was satisfactory. __________ Translated from Chinese Journal of Applied Chemistry, 2007, 24(5): 540–545 [译自: 应用化学]  相似文献   

14.
In this work, we investigate the electrochemical activity of dopamine (DA) and uric acid (UA) using both a bare and a modified carbon paste electrode as the working electrode, with a platinum wire as the counter electrode and a silver/silver chloride (Ag/AgCl) as the reference electrode. The modified carbon paste electrode consists of multi-walled carbon nanotubes (>95%) treated with α-cyclodextrine, resulting in an electrode that exhibits a significant catalytic effect toward the electro-chemical oxidation of DA in a 0.2-M Britton–Robinson buffer solution (pH 5.0). The peak current increases linearly with the DA concentration within the molar concentration ranges of 2.0 × 10−6 to 5.0 × 10−5 M and 5.0 × 10−5 to 1.9 × 10−4 M. The detection limit (signal to noise >3) for DA was found to be 1.34 × 10−7 M, respectively. In this work, voltammetric methods such as cyclic voltammetry, chronoamperometry, chronocuolometry, differential pulse and square wave voltammetry, and linear sweep and hydrodynamic voltammetry were used. Cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. The diffusion coefficient (D, cm2 s−1 = 3.05 × 10−5) and the kinetic parameters such as the electron transfer coefficient (α = 0.51) and the rate constant (k, cm3 mol−1 s−1 = 1.8 × 103) for DA were determined using electrochemical approaches. By using differential pulse voltammetry for simultaneous measurements, we obtained two peaks for DA and UA in the same solution, with the peak separation approximately 136 mV. The average recovery was measured at 102.45% for DA injection.  相似文献   

15.
李建玲 《高分子科学》2010,28(5):667-671
<正>The polymer of complex[Ni(salen)],(N,N'-ethylenebis(salicylideneaminato) nickel(H)),was prepared on graphite electrode by the route of linear sweep potential method.The nano-micro sheaf/wire structures of poly[Ni(salen)]have been obtained by adjusting the polymerization sweep rate of 5,20 and 40 mV·s~(-1).The polymer prepared at 20 mV·s~(-1) had nanoscaled wire structure of ca.100 nm in diameter.The good electrochemical reversibility of poly[Ni(salen)]was investigated by cyclic voltammetry and galvanostatic test in 1.0 mol/L Et_3MeNBF_4/acetonitrile solution.The initial specific gravimetric capacitance of poly[Ni(salen)]at the current density of 0.1 mA·cm~(-2) reached 270.2 F·g~(-1),however,the cycle stability needs to be improved.  相似文献   

16.
The electrochemical behaviour of pyridoxine hydrochloride (pyridoxine HCl) at the plain carbon paste electrode and the electrode modified with oxa crown ether has been studied using voltammetric and impedance measurements. The macrocycles used as modifiers were 18-crown-6, dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6 and dibenzo-24-crown-8, out of which DB18C6 gave better response for pyridoxine HCl. Tris buffer (pH 10.3) was chosen as an appropriate medium among the several supporting electrolytes of varying pH studied. The characterization of the DB18C6-modified electrode (CME-DB18C6) using kinetic parameters such as number of electrons (n) and electron transfer coefficient (α) is studied by cyclic voltammetry. Electrochemical impedance spectroscopic measurements obtained confirm the current enhancement over the modified electrode. Analytical applications of this electrode have been studied for the determination of pyridoxine HCl. A sensitive linear working range of 0.6 to 100 μg cm−3 with a detection limit of 0.4 μg cm−3 by differential pulse voltammetry was observed for pyridoxine HCl on CME-DB18C6. However, on decreasing the scan rate to 5 mV s−1, the detection limit lowered to 0.2 μg cm−3. Interference from some vitamins like thiamine hydrochloride, riboflavin, nicotinamide, para-aminobenzoic acid, cyanocobalamin, folic acid and d-biotin and amino acid l-tryptophan was studied, and simultaneously, riboflavin, thiamine hydrochloride and pyridoxine HCl were determined over the modified electrode, CME-DB18C6. The modified electrode is successfully used for the determination of pyridoxine HCl in multivitamin pharmaceutical preparations.  相似文献   

17.
Based on the interaction of cupferron and lead(II) complex [Cup‐Pb(II)] with double‐stranded DNA (dsDNA) a new voltammetric method for the detection of DNA was described in this paper. In pH 4.0 HAc‐hexamine buffer solution, [Cup‐Pb(II)] complex showed a sensitive second order derivative polarographic reductive peak at ‐0.554 V (vs. SCE). After the addition of dsDNA into [Cup‐Pb(II)] mixture solution the reductive peak current decreased with the positive shift of reductive peak potential, which was the typical characteristic of intercalation mode. Under the optimum conditions, the decrease of reductive peak current was directly proportional to the dsDNA concentration in the range from 1.0 to 25.0 mg/L with the linear regression equation as ΔIp″ (nA) = 129.30 + 62.51 C (mg/L) (n = 13, γ = 0.991). The detection limit of 0.90 mg/L (3σ) and the relative standard derivation (RSD) of 2.43% for 10 parallel determinations of 10.0 mg/L dsDNA were found. The method was successfully applied to synthetic samples with good results, and the stoichiometry of dsDNA with [Cup‐Pb(II)] complex was calculated by the voltammetic data with the binding number as 2 and the binding constant as 2.82 × 109.  相似文献   

18.
A new method of electrochemical probe has been proposed for the determination of Herring Sperm DNA (DNA) based on its interaction with Basic Brown G (BBG). The electrochemical behavior of interaction of BBG with DNA was investigated on Hg electrode. In 0.1 mol L−1 NH3-NH4Cl buffer solution (pH 8.0), BBG can be reduced on Hg electrode with a well-defined voltammetric peak at −0.67 V (versus SCE). In the presence of DNA, the reduction peak current of BBG decreases and the peak potential shifts to a more positive potential without the appearance of new peak. The study shows that a new BBG-DNA complex is formed by linear sweep voltammetry (LSV) and spectrophotometry. The decrease of the second order derivative of reductive peak current (Δip) of BBG is proportional to the concentration of DNA in the range of 0.10-36 μg mL−1. Limit of detection of DNA is 0.04 μg mL−1. DNA of Hepatitis B Virus in serum samples was determined satisfactorily. Additionally, the binding mechanism was preliminarily discussed. The mode of interaction between BBG and DNA was found to be intercalation binding.  相似文献   

19.
A new approach for a simple electrochemical detection of PAT gene fragment is described. Poly(2,6-pyridinedicarboxylic acid) (PDC) modified glassy carbon electrode (GCE) was prepared by potential scan electropolymerization in an aqueous solution. Mg2 ions were incorporated by immer-sion of the modified electrode in 0.5 mol/L aqueous solution of MgCl2 to complete the preparation of a generic "activated" electrode ready for binding the probe DNA. The ssDNA was linked to the conduct-ing polymer by forming a bidentate complex between the carboxyl groups on the polymer and the phosphate groups of DNA via Mg2 . DNA immobilization and hybridization were characterized with dif-ferential pulse voltammetry (DPV) by using methylene blue (MB) as indicator and electrochemical im-pedance spectroscopy (EIS). The EIS was of higher sensitivity for DNA detection as compared with voltammetric methods in our strategy. The electron transfer resistance (Ret) of the electrode surface in EIS in [Fe(CN)6]3-/4- solution increased after the immobilization of the DNA probe on the Mg/PDC/GCE electrode. The hybridization of the DNA probe with complementary DNA (cDNA) made Ret increase further. The difference between the Ret at ssDNA/Mg/PDC/GCE and that at hybridization DNA modified electrode (dsDNA/Mg/PDC/GCE) was applied to determine the specific sequence related to the target PAT gene with the dynamic range comprised between 1.0 × 10-9 and 1.0 × 10_5 mol/L. A detection limit of 3.4 × 10-10 mol/L of oligonucleotides can be estimated.  相似文献   

20.
Nano-Al2O3 was doped in poly(acrylonitrile-co-methyl methacrylate) (P(AN-co-MMA)), and polyethylene(PE)-supported P(AN-co-MMA)/nano-Al2O3 microporous composite polymer electrolyte (MCPE) was prepared. The performances of the prepared MCPE for lithium ion battery use, including ionic conductivity, electrochemical stability, interfacial compatibility, and cyclic stability, were studied by scanning electron spectroscopy, linear sweep voltammetry, and electrochemical impedance spectroscopy. It is found that the nano-Al2O3 significantly affects the MCPE performances. Compared to the MCPE without any nano-Al2O3, the MCPE with 10 wt.% nano-Al2O3 reaches its best performances. Its ionic conductivity is improved from 2.0 × 10−3 to 3.2 × 10−3 S cm−1, its decomposition potential is enhanced from 5.5 to 5.7 V (vs Li/Li+), and its interfacial resistance on lithium is reduced from 520 to 160 Ω cm2. Thus, the battery performance is improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号