首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of chlorine dioxide with excess NO(2)(-) to form ClO(2)(-) and NO(3)(-) in the presence of a large concentration of ClO(2)(-) is followed via stopped-flow spectroscopy. Concentrations are set to establish a preequilibrium among ClO(2), NO(2)(-), ClO(2)(-), and an intermediate, NO(2). Studies are conducted at pH 12.0 to avoid complications due to the ClO(2)(-)/NO(2)(-) reaction. These conditions enable the kinetic study of the ClO(2) reaction with nitrogen dioxide as well as the NO(2) disproportionation reaction. The rate of the NO(2)/ClO(2) electron-transfer reaction is accelerated by different nucleophiles (NO(2)(-) > Br(-) > OH(-) > CO(3)(2-) > PO(4)(3-) > ClO(2)(-) > H(2)O). The third-order rate constants for the nucleophile-assisted reactions between NO(2) and ClO(2) (k(Nu), M(-2) s(-1)) at 25.0 degrees C vary from 4.4 x 10(6) for NO(2-) to 2.0 x 10(3) when H(2)O is the nucleophile. The nucleophile is found to associate with NO(2) and not with ClO(2) in the rate-determining step to give NuNO(2)(+) + ClO(2)(-). The concurrent NO(2) disproportionation reaction exhibits no nucleophilic effect and has a rate constant of 4.8 x 10(7) M(-1) s(-1). The ClO(2)/NO(2)/nucleophile reaction is another example of a system that exhibits general nucleophilic acceleration of electron transfer. This system also represents an alternative way to study the rate of NO(2) disproportionation.  相似文献   

2.
The oxidation of ClO(2) by OCl(-)is first order with respect to both reactants in the neutral to alkaline pH range: -d[ClO(2)]/dt = 2k(OCl)[ClO(2)][OCl(-)]. The rate constant (T = 298 K, mu = 1.0 M NaClO(4)) and activation parameters are k(OCl) = 0.91 +/- 0.02 M(-1) s(-1), DeltaH = 66.5 +/- 0.9 kJ/mol, and DeltaS(++) = -22.3 +/- 2.9 J/(mol K). In alkaline solution, pH > 9, the primary products of the reaction are the chlorite and chlorate ions and consumption of the hypochlorite ion is not observed. The hypochlorite ion is consumed in increasing amounts, and the production of the chlorite ion ceases when the pH is decreased. The stoichiometry is kinetically controlled, and the reactants/products ratios are determined by the relative rates of the production and consumption of the chlorite ion in the ClO(2)/OCl(-) and HOCl/ClO(2)(-) reactions, respectively.  相似文献   

3.
The detailed stoichiometry of the reaction between the aldopentoses, ribose, arabinose, lyxose, and xylose, and the cis rhodium(III) complex of the macrocyclic tetraamine ligand rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane in weakly acidic aqueous solution has been studied by 13C NMR, using deuterium- and carbon-13-labeled substrates. The overall process is a catalytic disproportionation reaction, in which two aldopentose molecules are transformed into the corresponding alditol and aldonolactone, both with an unchanged configuration around carbon atoms 2, 3, and 4. The mechanism of this reaction is suggested to involve coordination of a hydrated and an unhydrated substrate molecule through their carbon-1 bound oxygen atoms followed by a hydride shift from the hydrated to the unhydrated substrate. This disproportionation process is subsequently followed by aquation of the reaction product to give the free alditol and a mixture of the aldonic acid and the corresponding aldonolactone. Concurrently with the aquation reaction, incorporation of solvent hydrogen at the carbon-1 atom of the alditol is also observed for the rhodium-coordinated alditol reaction product.  相似文献   

4.
cis-[Ru(2,9-Me(2)phen)(2)(OH(2))(2)](2+) reacts readily with chlorite at room temperature at pH 4.9 and 6.8. The ruthenium(II) complex can catalyze the disproportionation of chlorite to chlorate and chloride, the oxidation of chlorite to chlorine dioxide, as well as the oxidation of alcohols by chlorite.  相似文献   

5.
A titrimetric and spectrophotometric procedure has been developed for the determination of ClO2 in water samples. The procedure is rapid, accurate, and free of normal interferences present in water. It is based upon the reaction of ClO2 with substituted halophenol indicators.  相似文献   

6.
The product of the reaction of valeraldehyde with chlorine dioxide was determined, and the solvent effect on the reaction kinetics was studied. The major oxidation product is valeric acid. The reaction rate is described by the second-order equation w = k[RCHO]·[ClO2]. The rate constants were measured in the 297–328 K interval, and the activation parameters of the reaction were determined.  相似文献   

7.
Reaction of chlorine dioxide with phenol   总被引:1,自引:0,他引:1  
The kinetics of phenol oxidation with chlorine dioxide in different solvents (2-methylpropan-1-ol, ethanol, 1,4-dioxane, acetone, acetonitrile, ethyl acetate, dichloromethane, heptane, tetrachloromethane, water) was studied by spectrophotometry. In all solvents indicated, the reaction rate is described by an equation of the second order w = k[PhOH]·[ClO2]. The rate constants were measured (at 10—60 °C), and the activation parameters of oxidation were determined. The reaction rate constant depends on the solvent nature. The oxidation products are a mixture of p-benzoquinone, 2-chloro-p-benzoquinone, and diphenoquinone.  相似文献   

8.
The oxidation of different phenols, viz., phenol, 3-methylphenol, 4-methylphenol, 4-tert-butylphenol, 2-cyclohexylphenol, 2,6-di-tert-butyl-4-methylphenol, and 2,4-dichlorophenol, with chlorine dioxide in acetonitrile was studied spectrophotometrically. The reaction rate is described by a second-order equation w = k[PhOH]· [ClO2]. The rate constants were measured and activation parameters of oxidation were determined in a temperature interval of 10–60°C. A dependence of the reaction rate constant on the phenol structure was found. The oxidation products were identified, and their yields were established.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2184–2187, October, 2004.  相似文献   

9.
The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step of the process, the reduction of chlorine dioxide to chlorite ion, is fast compared to the subsequent reduction of chlorite by iron(II). The overall stoichiometry is The rate is independent of pH over the range from 3.5 to 7.5, but the reaction is assisted by the presence of acetate ion. Thus the rate law is given by At an ionic strength of 2.0 M and at 25°C, ku = (3.9 ± 0.1) × 103 L mol?1 s?1 and kc = (6 ± 1) × 104 L mol?1 s?1. The formation constant for the acetatoiron(II) complex, Kf, at an ionic strength of 2.0 M and 25°C was found to be (4.8 ± 0.8) × 10?2 L mol?1. The activation parameters for the reaction were determined and compared to those for iron(II) ion reacting directly with chlorite ion. At 0.1 M ionic strength, the activation parameters for the two reactions were found to be identical within experimental error. The values of ΔH? and ΔS? are 64 ± 3 kJ mol?1 and + 40 ± 10 J K?1 mol?1 respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 554–565, 2004  相似文献   

10.
A novel method for the selective oxidation of various types of sulfides to sulfoxides using chlorine dioxide as the oxidant is proposed.  相似文献   

11.
12.
13.
3-Benzylsulfanyl-4,5-diphenyl-4H-1,2,4-triazole, 5-methylsulfanyl-1-phenyl-1H-tetrazole, 2-methylsulfanyl-1H-benzimidazole, 2-benzylsulfanyl-1H-benzimidazole, and 1-butylsulfanyl-4-nitrobenzene were oxidized to the corresponding sulfoxides with chlorine dioxide using different modes of oxidant supply. The oxidation process was characterized by high chemoselectivity.  相似文献   

14.
The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 201. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO2]/[air]), whereas there is no corresponding upper concentration limit. The maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO2 and 0.641 MPa at 90% ClO2. The induction time (the time from the moment of sparking to explosion) at 10% ClO2 was 2195 ms, but at 90% ClO2 the induction time was just 8 ms. The explosion reaction mechanism of ClO2 is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl2O3), from which the chain branching occurs.  相似文献   

15.
The products and kinetics of the liquid-phase oxidation of 11 aliphatic and aromatic thiols with chlorine dioxide were studied at –10—+70 °C in organic media. The rate constants and activation parameters of the reaction were determined. The influence of the thiol structure on its reactivity was studied. A strong solvent effect on the reaction rate constant was found, and the reaction mechanism was proposed.  相似文献   

16.
The formation of charge transfer complexes between chlorine dioxide and nitroxyl radicals (2,2,6,6-tetramethylpiperidin-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-methoxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-acetylamido-2,2,6,6-tetramethylpiperidin-1-oxyl, 2,2,5,5-tetramethyl-4-phenyl-3-imidazolin-1-oxyl, and bis(4-methoxyphenyl) nitroxide) in acetone, acetonitrile, n-heptane, diethyl ether, carbon tetrachloride, toluene, and dichloromethane was found by spectrophotometry at –60—+20 °C. The thermodynamic parameters of complex formation were determined. The radical structure affects its complex formation ability. The charge transfer complex is transformed into the corresponding oxoammonium salt.  相似文献   

17.
Chlorine dioxide was used to oxidize sterically hindered phenols and their derivatives (2,6-di-tertbutylphenol, 2,6-diisobornylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,6-diisobornyl-4-methylphenol, and 3,5-diisobornyl-4-hydroxybenzaldehyde) in organic solvent.  相似文献   

18.
Gauw RD  Emmert GL  Bubnis B  Gordon G 《Talanta》1999,50(5):1073-1078
Electrolyzed salt brine generators hold great promise for water disinfection in small communities and remote locations. Electrolysis cell liquors have been reported to contain chlorine, chlorine dioxide and ozone. High resolution spectrophotometry was used to observe the presence (or absence) of a unique spectral absorbance pattern present in solutions containing 1-2 mg/l chlorine dioxide.  相似文献   

19.
20.
Laser-evaporated chromium atoms are shown to insert into dioxygen to form CrO 2 in solid argon. Annealing allows diffusion and reactions to form (eta (2)-O 2) 2CrO 2, which is characterized as [(O 2 (-)) 2(CrO 2) (2+)], a side-on bonded disuperoxo-chromium dioxide complex. The (eta (2)-O 2) 2CrO 2 complex further reacts with xenon atom doped in solid argon to give (eta (1)-OO)(eta (2)-O 2)CrO 2(Xe), which can be regarded as an O 2 molecule weakly interacting with [(O 2) (2-)(CrO 2) (2+)Xe], a side-on bonded peroxo-chromium dioxide-xenon complex. The results indicate surprisingly that xenon atom induces a disproportionation reaction from superoxo to peroxo and dioxygen complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号