首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.  相似文献   

2.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

3.
Treatment of ThCl(4)(DME)(2) or UCl(4) with 1 equiv of dilithiumbis(iminophosphorano) methandiide, [Li(2)C(Ph(2)P═NSiMe(3))(2)] (1), afforded the chloro actinide carbene complexes [Cl(2)M(C(Ph(2)P═NSiMe(3))(2))] (2 (M = Th) and 3 (M = U)) in situ. Stable PCP metal-carbene complexes [Cp(2)Th(C(Ph(2)P═NSiMe(3))(2))] (4), [Cp(2)U(C(Ph(2)P═NSiMe(3))(2))] (5), [TpTh(C(Ph(2)P═NSiMe(3))(2))Cl] (6), and [TpU(C(Ph(2)P═NSiMe(3))(2))Cl] (7) were generated from 2 or 3 by further reaction with 2 equiv of thallium(I) cyclopentadienide (CpTl) in THF to yield 4 or 5 or with 1 equiv of potassium hydrotris(pyrazol-1-yl) borate (TpK) also in THF to give 6 or 7, respectively. The derivative complexes were isolated, and their crystal structures were determined by X-ray diffraction. All of these U (or Th)-carbene complexes (4-7) possess a very short M (Th or U)═carbene bond with evidence for multiple bond character. Gaussian 03 DFT calculations indicate that the M═C double bond is constructed by interaction of the 5f and 6d orbitals of the actinide metal with carbene 2p orbitals of both π and σ character. Complex 3 reacted with acetonitrile or benzonitrile to cyclo-add C≡N to the U═carbon double bond, thereby forming a new C-C bond in a new chelated quadridentate ligand in the bridged dimetallic complexes (9 and 10). A single carbon-U bond is retained. The newly coordinated uranium complex dimerizes with one equivalent of unconverted 3 using two chlorides and the newly formed imine derived from the nitrile as three connecting bridges. In addition, a new crystal structure of [CpUCl(3)(THF)(2)] (8) was determined by X-ray diffraction.  相似文献   

4.
The reaction of TaCl5 with a single equivalent of Cl3P=NSiMe3 resulted in the isolation of the perhalogenated (phosphoraniminato) tantalum(V) complex TaCl4(N=PCl3) (1). Reaction of 1 with an excess of THF and subsequent cooling produced crystals of TaCl4(N=PCl3)(THF) (1.THF), which possesses a distorted octahedral Ta center with a THF molecule coordinated trans to the phosphoraniminato ligand. The reaction of 1 with the aminophosphoranimine, (Me3Si)2NPCl2=NSiMe3, resulted in a [3 + 1] cyclocondensation reaction to form the metallacyclic complex, TaCl3(N=PCl3)[N(SiMe3)PCl2N(SiMe3)] (2), which contains a TaNPN four-membered ring and a phosphoraniminato ligand (N=PCl3). The analogous [3 + 1] cyclocondensation reaction between (Me3Si)2NPCl2=NSiMe3 and TaCl5 led to the isolation of TaCl4[N(SiMe3)PCl2N(SiMe3)] (3). An attempt to cleave the NPN ligand from the Ta center in 2 via protonolysis with HCl led to an unusual phosphoraniminato ligand coupling reaction to yield the novel phosphazenium salt [N(PCl2NH2)2][TaCl6] (4). All new compounds (1.THF and complexes 1-4) were characterized by single-crystal X-ray diffraction.  相似文献   

5.
Treatment of trans-[PtCl(4)(RCN)(2)](R = Me, Et) with the hydrazone oximes MeC(=NOH)C(R')=NNH(2)(R' = Me, Ph) at 45 degrees C in CH(2)Cl(2) led to the formation of trans-[PtCl(4)(NH=C(R)ON=C(Me)C(R')=NNH(2))(2)](R/R' = Me/Ph 1, Et/Me 2, Et/Ph 3) due to the regioselective OH-addition of the bifunctional MeC(=NOH)C(R')=NNH(2) to the nitrile group. The reaction of 3 and Ph(3)P=CHCO(2)Me allows the formation of the Pt(II) complex trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NNH(2))2](4). In 4, the imine ligand was liberated by substitution with 2 equivalents of bis(1,2-diphenylphosphino)ethane (dppe) in CDCl(3) to give, along with the free ligand, the solid [Pt(dppe)(2)]Cl(2). The free iminoacyl hydrazone, having a restricted life-time, decomposes at 20-25 degrees C in about 20 h to the parent organonitrile and the hydrazone oxime. The Schiff condensation of the free NH(2) groups of 4 with aromatic aldehydes, i.e. 2-OH-5-NO(2)-benzaldehyde and 4-NO(2)-benzaldehyde, brings about the formation of the platinum(II) complexes trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(3)-2-OH-5-NO(2))2](5) and trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(4)-4-NO(2))2](6), respectively, containing functionalized remote peripherical groups. Metallization of 5, which can be considered as a novel type of metallaligand, was achieved by its reaction with M(OAc)(2).nH(2)O (M = Cu, n= 2; M = Co, n= 4) in a 1:1 molar ratio furnishing solid heteronuclear compounds with composition [Pt]:[M]= 1:1. The complexes were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H, 13C[1H] and (195)Pt NMR spectroscopies; X-ray structures were determined for 3, 4 and 5.  相似文献   

6.
Reactions of lithium dialkyl/phenyl phosphanylmethylides, RR'PCH(X)Li (R, R' = Me, Et, Ph and R = Me, R' = Ph; X = H or Me), with sulfur diimides S(NR')2 (R' = (t)Bu or SiMe3) in an equimolar ratio yielded Janus head complexes with the structural motif [Li{RR'PCH(X)S(NR')2}]2 (R' = (t)Bu, SiMe3). The basic core of these dimeric complexes is composed of a (LiN)(2) four-membered ring containing two four-coordinated lithium atoms. A lithium complex of the new Janus head ligand with another structural motif [TMEDA·Li{Ph(2)PCH(2)S(NSiMe3)2}] (6) could be isolated from the reaction of [Ph2PCH2Li·TMEDA] with S(NSiMe3)2. Two monomeric complexes [Mg{Me2PCH2S(NR')2}2] (7, 8) were synthesised by a straightforward reaction of [Li{Me2PCH2S(NR')2}2] with MgCl2 in pentane. The magnesium atom is chelated by one phosphorus atom and two nitrogen atoms of each unit of the hemilabile ligand in a tripodal manner, leading to octahedral geometry around the magnesium cation. A complete analysis of [Ph2PCH2(SNSiMe3)(HNSiMe3)] (9) is also described in which one nitrogen atom of the imido moiety is protonated.  相似文献   

7.
The sequential reaction of ZnMe2 with a 2-pyridylamine (HN(2-C5H4N)R, R = Ph: 1; 3,5-Xy (=3,5-xylyl): 2; 2,6-Xy: 3; Bz (=benzyl): 4; Me: 5), tBuLi and thereafter with oxygen affords various lithium zincate species, the solid-state structures of which reveal a diversity of oxo-capture modes. Amine 1 reacts to give both dimeric THF [Li(Me)OZn[N(2-C5H4N)Ph]2] (6), wherein oxygen has inserted into the Zn-C bond of a [MeZn[N(2-C5H4N)-Ph]2] ion, and the trigonal Li2Zn complex, bis(OtBu)-capped (THF x Li)2-[[(mu3-O)tBu]2Zn[N(2-C5H4N)Ph]2] (7). The structural analogue of 6 (8) results from the employment of 2, while the use of more sterically congested 3 yields a pseudo-cubane dimer [(THF x [Li(tBu)OZn(OtBu)Me]]2] (9) notable for the retention of labile Zn-C(Me). Amines 4 and 5 afford the oxo-encapsulation products [mu4-O)Zn4[(2-C5H4N)-NBz]6] (10b), and [tBu(mu3-O)-Li3(mu6-O)Zn3[(2-C5H4N)NMe]6] (11), respectively, with concomitant oxo-insertion into a Li-C interaction resulting in capping of the fac-isomeric (mu6-O)M3M'3 distorted octahedral core of the latter complex by a tert-butoxide group.  相似文献   

8.
Reactions of zirconium dialkyl- or bis(amido)-dichloride complexes "[Zr(CH2SiMe3)2Cl2(Et2O)2]" or [Zr(NMe2)2Cl2(THF)2] with primary alkyl and aryl amines are described. Reaction of "[Zr(CH2SiMe3)2Cl2(Et2O)2]" with RNH2 in THF afforded dimeric [Zr2(mu-NR)2Cl4(THF)4](R=2,6-C6H3iPr2 (1), 2,6-C6H3Me2 (2) or Ph (3)), [Zr2(mu-NR)2Cl4(THF)3](R=tBu (5), iPr (6), CH2Ph (7)), or the "ate" complex [Zr2(mu-NC6F5)2Cl6(THF)2{Li(THF)3}2](4, the LiCl coming from the in situ prepared "[Zr(CH2SiMe3)2Cl2(Et2O)2]"). With [Zr(NMe2)2Cl2(THF)2] the compounds [Zr2(mu-NR)2Cl4(L)x(L')y](R=2,6-C6H3iPr2 (8), 2,6-C6H3Me2 (9), Ph (10) or C6F5 (11); (L)x(L')y=(NHMe2)3(THF), (NHMe2)2(THF)2 or undefined), [Zr2(mu-NtBu)2Cl4(NHMe2)3] (12) and insoluble [Zr(NR)Cl2(NHMe2)]x(R=iPr (13) or CH2Ph (14)) were obtained. Attempts to form monomeric terminal imido compounds by reaction of or with an excess of pyridine led, respectively, to the corresponding dimeric adducts [Zr2(mu-2,6-C6H3Me2)2Cl4(py)4] (15) and [Zr2(mu-NtBu)2Cl4(py)3] (16). The X-ray structures of 1, 2, 4, 8, 12 and 15 have been determined.  相似文献   

9.
The reaction of bisgermavinylidene [(Me3SiN=PPh2)2C=Ge-->Ge=C(PPh2=NSiMe3)2] (1) with M(CO)5(THF) ( M = Cr, W, Mo) afforded the metallagermacyclopropane [(Me-3SiN=PPh2)2CGeM(CO)3[M(CO)5]] [M = W (2), Cr (3), Mo (4)]; in one of the reactions, compound 4 reacts further to give a "pincer" carbene complex [(CO)3Mo[C(Ph2P=NSi Me3)2]] (5); the X-ray structures of compounds 2 and 5 have been determined.  相似文献   

10.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   

11.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

12.
Metathesis reactions between either SrI(2) or BaI(2) and 2 equiv of the potassium phosphanide [[(Me(3)Si)(2)CH]-(C(6)H(4)-2-OMe)P]K yield, after recrystallization, the complexes [[([Me(3)Si](2)CH)(C(6)H(4)-2-OMe)P](2)M(THF)(n)] [M = Sr, n = 2 (5); Ba, n = 3 (6)]. Similar metathesis reactions between MI(2) and 2 equiv of the more sterically demanding potassium phosphanide [[(Me(3)Si)(2)CH](C(6)H(3)-2-OMe-3-Me)P]K yield the chemically isostructural complexes [[([Me(3)Si](2)CH)(C(6)H(3)-2-OMe-3-Me)P](2)M(THF)(2)] [M = Ca (9), Sr (7), Ba (8)]. Compounds 5-9 have been characterized by multi-element NMR spectroscopy and X-ray crystallography. Complex 9 is thermally unstable and decomposes at room temperature to give the tertiary phosphane [(Me(3)Si)(2)CH](C(6)H(3)-2-OMe-3-Me)P(Me) and an unidentified Ca-containing product. Compounds 5 and 6 also decompose at elevated temperatures to give the corresponding tertiary phosphane [(Me(3)Si)(2)CH](C(6)H(4)-2-OMe)P(Me) and intractable metal-containing products. The decomposition of 5, 6, and 9 suggests that these compounds undergo an intramolecular methyl migration from the O atom in one phosphanide ligand to the P atom of an adjacent phosphanide ligand to give species containing dianionic alkoxo-phosphanide ligands.  相似文献   

13.
Mixed amidinato amido complexes [Me3SiNC(tBu)NSiMe3]M[N(SiMe3)2] (M = Sn 2, Ge 3) were prepared by the reaction of [Me3SiNC(tBu)NSiMe3]Li (1a) with SnCl2 and GeCl2(dioxane) in ether. The N(SiMe3)2 ligand in these compounds is derived from the rearrangement of the [Me3SiNC(tBu)NSiMe3]- anion with extrusion of tBuCN. The susceptibility of [Me3SiNC(tBu)NSiMe3]- to rearrangement appears to be dependent on reaction solvent and on the coordinated metal center. Single-crystal X-ray diffraction studies of 2 and 3 are presented. Replacement of Me for tBu in the ligand allowed [Me3SiNC(Me)NSiMe3]2SnII (4) to be isolated, and an X-ray structure of this compound is reported. The isolation of 4 indicates that steric factors also play a role in the stability of [Me3SiNC(tBu)NSiMe3]-. Compounds 2 and 3 are outstanding catalysts for the cyclotrimerization of phenyl isocyanates to perhydro-1,3,5-triazine-2,4,6-triones (isocyanurates) at room temperature. In contrast, complex 4 catalytically reacts with phenyl isocyanate to produce isocyanate dimer and trimer in a 52:35 ratio.  相似文献   

14.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

15.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

16.
Treatment of the recently reported potassium salt [K(thf)(n)][N(PPh(2))(2)] (n=1.25, 1.5) with anhydrous yttrium or lanthanide trichlorides in THF leads after crystallization from THF/n-pentane (1:2) to the monosubstituted diphosphanylamide complexes [LnCl(2)[(Ph(2)P)(2)N](thf)(3)] (Ln=Y, Sm, Er, Yb). The single-crystal X-ray structures of these complexes show that the metal atoms are surrounded by seven ligands in a distorted pentagonal bipyramidal arrangement, in which the chlorine atoms are located in the apical positions. The diphosphanylamide ligand is always eta(2)-coordinated through the nitrogen atom and one phosphorus atom. Further reaction of [SmCl(2)[(Ph(2)P)(2)N](thf)(3)] with K(2)C(8)H(8) or reaction of [LnI(eta(8)-C(8)H(8))(thf)(3)] with [K(thf)(n)][N(PPh(2))(2)] in THF gives the corresponding cyclooctatetraene complexes [Ln[(Ph(2)P)(2)N](eta(8)-C(8)H(8))(thf)(2)] (Ln=La, Sm). The single crystals of these compounds contain enantiomerically pure complexes. Both compounds adopt a four-legged piano-stool conformation in the solid state. The structures of the A and the C enantiomers were established by single-crystal X-ray diffraction. The more soluble bistrimethylsilyl cyclooctatetraene complex [Y[(Ph(2)P)(2)N](eta(8)-1,4-(Me(3)Si)(2)C(8)H(6))(thf)(2)] was obtained by transmetallation of Li(2)[1,4-(Me(3)Si)(2)C(8)H(6)] with anhydrous yttrium trichloride in THF followed by the addition of one equivalent of [K(thf)(n)][N(PPh(2))(2)]. The (89)Y NMR signal of the complex is split up into a triplet, supporting other observations that the phosphorus atoms are chemically equivalent in solution and, thus, dynamic behavior of the ligand in solution can be anticipated.  相似文献   

17.
Imino(triphenyl)phosphorane, Ph3P=NH (1), reacts with nitrile complexes of Pt(IV) to generate hydrolytically sensitive [PtCl4{NH=C(R)N=PPh3}2](R=Me 2a, Et 2b, Ph 2c), and with the Pt(II) complex [PtCl2(EtCN)2] to give [PtCl2(EtCN){NH=C(Et)N=PPh3}](3) and [PtCl2{NH=C(Et)N=PPh3}2](4); X-ray crystallography performed upon (2b) and (3) confirms the presence of an imine/nitrile addition ligand bound by the terminal nitrogen.  相似文献   

18.
Yttrium and lanthanide complexes with different P,N ligands in the coordination sphere have been synthesized. First the chloride complexes [{CH(PPh2NSiMe3)2}Ln{(Ph2P)2N}Cl] (Ln = Y (1 a), La (1 b), Nd (1 c), Yb (1 d)) having the bulky [CH(PPh2NSiMe3)2]- and the flexible [(Ph2P)2N]- ligands in the same molecule were prepared by three different synthetic pathways. Compounds 1 a-d can be obtained by reaction of [{[CH(PPh2NSiMe3)2]LnCl2}2] with [K(thf)nN(PPh2)2] (n = 1.25, 1.5) or by treatment of [{(Ph2P)2N}LnCl2(thf)3] with K[CH(PPh2NSiMe3)2]. Furthermore, a one-pot reaction of K[CH(PPh2NSiMe3)2] with LnCl3 and [K(thf)nN(PPh2)2] leads to the same products. Single-crystal X-ray structures of 1 a-d show that the conformation of the six-membered metallacycle (N1-P1-C1-P2-N2-Ln) which is formed by chelation of the [CH(PPh2NSiMe3)2]- ligand to the lanthanide atom is influenced by the ionic radius of the central metal atom. In solution dynamic behavior of the [(Ph2P)2N]- ligand is observed, which is caused by rapid exchange of the two different phosphorus atoms. Further reaction of 1 b with KNPh2 resulted in [{(Me3SiNPPh2)2CH}La{N(PPh2)2}(NPh2)] (2). Compounds 1 a-d and 2 are active in the ring-opening polymerization of epsilon-caprolactone and the polymerization of methyl methacrylate. In some cases high molecular weight polymers with good conversions and narrow polydispersities were obtained. In both polymerizations the catalytic activity depends on the ionic radius of the metal center.  相似文献   

19.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

20.
Yan L  Liu H  Wang J  Zhang Y  Shen Q 《Inorganic chemistry》2012,51(7):4151-4160
Metathesis reactions of YbI(2) with Li(2)L (L = Me(3)SiN(Ph)CN(CH(2))(3)NC(Ph)NSiMe(3)) in THF at a molar ratio of 1:1 and 1:2 both afforded the Yb(II) iodide complex [{YbI(DME)(2)}(2)(μ(2)-L)] (1), which was structurally characterized to be a dinuclear Yb(II) complex with a bridged L ligand. Treatment of EuI(2) with Li(2)L did not afford the analogous [{EuI(DME)(2)}(2)(μ(2)-L)], or another isolable Eu(II) complex, but the hexanuclear heterobimetallic cluster [{Li(DME)(3)}(+)](2)[{(EuI)(2)(μ(2)-I)(2)(μ(3)-L)(2)(Li)(4)}(μ(6)-O)](2-) (2) was isolated as a byproduct in a trace yield. The rational synthesis of cluster 2 could be realized by the reaction of EuI(2) with Li(2)L and H(2)O in a molar ratio of 1:1.5:0.5. The reduction reaction of LLnCl(THF)(2) (Ln = Yb and Eu) with Na/K alloy in THF gave the corresponding Ln(II) complexes [Yb(3)(μ(2)-L)(3)] (3) and [Eu(μ(2)-L)(THF)](2) (4) in good yields. An X-ray crystal structure analysis revealed that each L in complex 3 might adopt a chelating ligand bonding to one Yb atom and each Yb atom coordinates to an additional amidinate group of the other L and acts as a bridging link to assemble a macrocyclic structure. Complex 4 is a dimer in which the two monomers [Eu(μ(2)-L)(THF)] are connected by two μ(2)-amidinate groups from the two L ligands. Complex 3 reacted with CyN═C═NCy and diazabutadienes [2,6-(i)Pr(2)C(6)H(3)N═CRCR═NC(6)H(3)(i)Pr(2)-2,6] (R═H, CH(3)) (DAD) as a one-electron reducing agent to afford the corresponding Yb(III) derivatives: the complex with an oxalamidinate ligand [LYb{(NCy)(2)CC(NCy)(2)}YbL] (5) and the complexes containing a diazabutadiene radical anion [LYb((i)Pr(2)C(6)H(3)NCRCRNC(6)H(3)(i)Pr(2))] (R = H (6), R = CH(3) (7)). Complexes 5-7 were confirmed by an X-ray structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号