首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defining the quantity K as the signal-to-noise ratio (SNR) and the normalized intensity fluctuation C(0) of a single-mode laser for bias signal modulation driven by color noises with colored correlation, the whole output properties of the laser system is described by K. It is found that there is a maximum in the curves of K versus D, Q, and io. The optimization parameters are gained.  相似文献   

2.
Titanium samples were treated by the mixing technology with laser and plasma (LPN) using different laser power densities. These nitrided samples were then annealed at 473 K, 673 K, 873 K, and 1073 K for 2 h in vacuum, respectively. The samples before and after annealing were characterized at room temperature and compared in terms of microstructure. X-ray diffraction and cross-sectional optical microscopy studies showed that the layer structure of the titanium nitride coating is preserved after annealing at 1073 K when the coating is formed using a laser power density of 8.0 × 105 W/cm2. Therefore, titanium nitride coatings produced by LPN demonstrate excellent thermal stability and are potential candidates for high temperature tribological applications.  相似文献   

3.
Thermal dependence on the small signal gain of Nd/Cr:YAG (yttrium aluminum garnet) ceramics was observed experimentally. Usually, Nd:YAG crystal and ceramics have remarkable gain reduction when optical pumping is performed and the temperature of the laser media is upped to 373 K. A CW laser light generated in a 1064 nm Nd:YAG laser oscillator was amplified by Nd/Cr:YAG ceramic amplifier, and the output power was measured at non-saturation level. Laser small signal gain of the ceramic disk was kept to 470 K. This property was remarkably different from one of Nd:YAG crystals or ceramics. The peak shift of the fluorescence was observed experimentally when the temperature is high.  相似文献   

4.
The Zinc oxide (ZnO) microcrystal is formed out of irradiated powder sample by a continuous-wave 532-nm laser with a high power of about 200 mW, and the microcrystal formation process is monitored by in situ Raman spectroscopy simultaneously. Scanning electron microscope image shows that multi-shaped ZnO microcrystal, including nano-rods and nano-flakes, is obtained near the brim of laser irradiated spot. The photoluminescence spectra of ZnO microcrystal are studied at both room temperature and low temperature of 10 K. With the ZnO microcrystal, we obtain that the peak intensity of near band-edge emission is at least 400 times stronger than that of deep-level emission at room temperature, and that up to fifth-order phonon replicas of free exciton emission are easily distinguished in the 10 K photoluminescence spectra. Both of them indicate that the ZnO microcrystal formed by intense laser irradiation has a very good crystalline structure.  相似文献   

5.
连续激光辐照ZnSe/MgF2/K9滤光片的透射特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 分析了连续激光辐照ZnSe/MgF2/K9滤光片引起透射特性的变化。在室温条件下,用波长0.632 8μm激光作为探测光束,测量了1.06μm连续激光辐照ZnSe/MgF2/K9滤光片温升引起薄膜折射率的改变,导致探测光束通过干涉滤光片后透过率的热致非线性变化。在光斑直径0.75mm条件下,测量了不同功率激光辐照ZnSe/MgF2/K9滤光片引起温升随时间的变化。在激光功率30W,辐照时间2.52s条件下,实验观测到ZnSe/MgF2/K9滤光片薄膜破坏温度约为90℃,辐照时间10s时干涉滤光片形成的薄膜龟裂形貌。  相似文献   

6.
UTPAL NUNDY 《Pramana》2014,82(1):147-152
The paper presents results of a theoretical model of a pulsed electron beam controlled CO2 laser (EBCL) to investigate the effect of cooling on the laser gas mixture. It is shown that cryogenic cooling can significantly improve the performance of the laser. The efficiency of an EBCL improved from 20% to 25.3% by cooling it to 200 K. The improvement is mainly due to the decrease of thermal population of the CO2 (0 1 0) vibration level.  相似文献   

7.
A far-infrared (FIR) NH3 laser was resonantly pumped with a line-tunable infrared (IR) NH3 laser. The number of the observed FIR laser lines amounted to 33. Most of them belonged toaR(J,K) rotation-inversion transition in (0, 1, 0, 0) vibrational state. The line tunability of sealed-off FIR NH3 laser was almost achieved in 90, 115, 150, and 220 m wavelength regions by the selective line tuning of the pumping IR NH3 laser.  相似文献   

8.
The preparation of palladium (Pd) films has been investigated using KrF or ArF laser irradiation on a Pd acetate (PdAc) coated substrate. A crystalline Pd film could be obtained by KrF laser irradiation (fluence = 15-40 mJ/cm2) but PdAc was found to remain in the film. An increase in the substrate temperature to 423 K decreased the inclusion of the unreacted precursor and produced a better crystallinity. An amorphous and uniform Pd film composed of very fine particles was found to be formed by this process under reduced pressure, which is probably due to the preferential ablation of the crystalline nuclei. ArF laser irradiation is more effective for decomposing the PdAc and for producing a Pd film with a better crystallinity and no (or smaller) organic inclusion.  相似文献   

9.
Based on space-dependent rate equations, the lowest threshold input power for a diode end-pumped solid-state laser is obtained for the pump spot size wp→0. However, as the pump beam waist is decreased, the thermally induced effects in the laser rod would be very high. Diffraction losses caused by radial and tangential variations of refractive index have been analyzed and compared for the Nd : YAG and the Yb : YAG at room temperature (300 K) and liquid-nitrogen temperature (77 K).  相似文献   

10.
The structure and morphology of chromium disilicide (CrSi2) nanometric films grown on 〈1 0 0〉 silicon substrates both at room temperature (RT) and at 740 K by pulsed laser ablation are reported. A pure CrSi2 crystal target was ablated with a KrF excimer laser in vacuum (∼3 × 10−5 Pa). Morphological and structural properties of the deposited films were investigated using Rutherford backscattering spectrometry (RBS), grazing incidence X-ray diffraction (GID), X-ray reflectivity (XRR), scanning (SEM) and transmission electron microscopy (TEM). From RBS analysis, the films’ thickness resulted of ∼40 nm. This value is in agreement with the value obtained from XRR and TEM analysis (∼42 and ∼38 nm, respectively). The films’ composition, as inferred from Rutherford Universal Manipulation Program simulation of experimental spectra, is close to stoichiometric CrSi2. GID analysis showed that the film deposited at 740 K is composed only by the CrSi2 phase. The RT deposited sample is amorphous, while GID and TEM analyses evidenced that the film deposited at 740 K is poorly crystallised. The RT deposited film exhibited a metallic behaviour, while that one deposited at 740 K showed a semiconductor behaviour down to 227 K.  相似文献   

11.
Pulsed laser deposition of 250-nm thick, amorphous Dy2Fe14B layers on 40-μm thick Nd2Fe14B melt-spun ribbons was conducted to improve coercivity and energy product. The coated ribbons were subsequently annealed by two methods: (1) furnace annealing in an inert-gas controlled quartz furnace using tantalum foil at 1173 K for 2 h; (2) laser annealing using a continuous wave CO2 laser with power varying from 10 to 20 W for 0.2 s (estimated temperatures using a thermal model were 993-1528 K). X-ray diffraction was used to identify the microstructural phases and grain size. Magnetic hysteresis tests were conducted at 300 K using a SQUID magnetometer with a maximum field of 5.0 T. Results showed a 10% increase in coercivity and 30% increase in energy product in coated over uncoated samples that were furnace-annealed. However, the coated and laser-annealed samples exhibited soft magnetic behavior with almost zero coercivity. The incomplete crystallization of amorphous phase and precipitation of α-Fe during laser annealing are found to be responsible for the observation of poor magnetic performance.  相似文献   

12.
We have demonstrated a magneto-optical spatial light modulator in which functionality is realized by (i) heating up to Curie temperature (Tc) magneto-optical elements (pixels) with a semiconductor laser and (ii) application of a switching magnetic field. The pixels were made of films of amorphous rare earth-transition metal compounds (TbFe films with Tc=403 K and DyFe films with Tc=343 K) having good magneto-optical responses for wavelengths from the visible spectral range. We have found that the magnetization direction of pixels can be modulated with a laser radiation density of 5 mJ/cm2 and in a switching magnetic field of 15 Oe.  相似文献   

13.
In reference to real devices fabricated in laboratories, the optical properties of AlGaInAs, InGaNAs, and InGaAsP semiconductor material systems for 1.3-μm semiconductor lasers are systematically studied. Simulation results show that both the AlGaInAs/InP and InGaNAs/GaAs material systems have better gain performance and smaller transparency carrier density than the InGaAsP/InP material system. For the AlGaInAs/InP material system, the characteristic temperature is improved by using compensating tensile strain in barrier. Specifically, for a 250-μm-long short-cavity AlGaInAs/InP laser, when the barrier is with a compensating tensile strain of 0.39%, the characteristic temperatures in 290-330 K and 330-350 K can be enhanced to 121.7 K and 58.9 K, respectively. For the InGaNAs/GaAs material system, simulation results suggest that the laser performance can be significantly improved when the laser is with strain-compensated GaNAs barriers.  相似文献   

14.
A wavelength-tunable mid-infrared (mid-IR) laser is used to make time-resolved absorption measurements of methyl-cyclohexane (MCH) and n-dodecane vapor concentration, demonstrating the use of this novel laser source for sensing hydrocarbon fuels. Two sensitive and species-specific diagnostic strategies are investigated: (1) direct absorption at a fixed wavelength, and (2) dual-wavelength differential absorption with two rapidly-alternating wavelengths. The tunable laser light is produced using difference frequency generation by combining two near-infrared diode lasers in a periodically poled lithium niobate crystal, providing a continuous-wave (cw), room temperature mid-IR source with the low intensity noise, and rapid wavelength tunability typical of telecommunications diode lasers. Direct absorption measurements of MCH with a wavelength of 3413.7 nm demonstrate fast time response (1 μs) and low noise in cell (300-675 K) and shock tube (650-1450 K) experiments. The detection limits of MCH range from 0.5 ppm-m at 300 K to 11 ppm-m at 1440 K (pressure = 101 kPa). Next, time-division multiplexing is used to alternately generate two mid-IR wavelengths at 20 kHz, enabling the use of dual-wavelength differential absorption to eliminate interference absorption. Measurements of MCH concentration are first made in a cell, with varying amounts of n-heptane interference absorption. Accurate values of MCH concentration are obtained for n-heptane/MCH ratios as high as 15, demonstrating the utility of this sensor for species-specific hydrocarbon detection in systems with interfering absorption. Finally, time-resolved n-dodecane vapor concentration measurements are made in a shock-heated evaporating aerosol. The dual-wavelength differential absorption diagnostic is sensitive only to the vapor concentration, rejecting droplet extinction. These measurements illustrate the power of the differential absorption strategy for sensitive vapor-phase detection in the presence of particle scattering. The tunability of this new source will allow these concepts to be extended to other hydrocarbon fuels.  相似文献   

15.
在SILEX-1激光器上,利用光子计数型CCD测量了超短超强激光束与高纯度Mo相互作用而产生的发射谱。实验发现, 在超短超强激光脉冲作用下, Mo等离子体辐射Kα X射线, 这一过程伴随很强的热辐射和轫致辐射。Mo等离子体Kα X射线辐射强度、 热辐射和轫致辐射随激光功率密度增加而增强。Using a Single photon counting CCD, X ray emission spectra of high purity Mo irradiated by ultra short and ultra intense laser pulse was firstly detected. The experiment was carried out with the SILEX 1 laser facility. The experimental results show that, for Mo target, characteristic K shell emission (Kα) is observed in the 0.23—2.32 J energy range in addition to a broadband bremsstrahlung background, and the X ray radiation intensity, thermal radiation and bremsstrahlung increase with enhancementofthe laser power density.  相似文献   

16.
Modeling of CW laser diode irradiation of amorphous silicon films   总被引:1,自引:0,他引:1  
The purpose of this work is to determine the optimal parameters required to crystallize thin amorphous silicon films on glass substrate with a continuous wave (CW) laser diode (λ = 808 nm), using a numerical model developed in COMSOL Multiphysics. The numerical simulation of the laser crystallization process takes into account the solid-liquid phase change and the difference between the melting temperature of amorphous (Tma-Si = 1420 K) and that of crystalline silicon (Tmc-Si = 1690 K). We have varied the main parameters controlling the crystallization process, namely the power and the scan speed of the laser beam. Furthermore the initial temperature as well as the thickness of the a-Si:H layer were also taken as a parameter to optimize the process. We have determined the melting, crystallization and ablation energy threshold versus the different operational parameters.  相似文献   

17.
The diffusion and reactions of hydrogenous species generated by single-pulsed F2 laser photolysis of SiO-H bond in SiO2 glass were studied in situ between 10 and 330 K. Experimental evidence indicates that atomic hydrogen (H0) becomes mobile even at temperatures as low as approximately 30 K. A sizable number of H0 dimerize by a diffusion-limited reaction into molecular hydrogen (H2) that may migrate above approximately 200 K. Activation energies for the diffusion, inherently scattered due to the structural disorder in glass, are separated into three bands centered at approximately 0.1 eV for free H0, approximately 0.2 eV presumably for shallow-trapped H0, and approximately 0.4 eV for H2.  相似文献   

18.
A substantial spectral shift of the UV-laser induced luminescence in the Ag nanoparticles (NP) doped by Er3+ ions attached to ITO substrates was observed at T = 4.2 K. We have established high energy spectral shift of principal luminescent maxima (from wavelength equal to about 1.45 up to 1.15 μm) with increasing of the pumping nanosecond nitrogen laser power density up to 1.1 GW/cm2 operating at λ = 337 nm. With increasing Erbium content with respect to Ag the spectral shift and spectral line broadening increase. It may be caused by specific features of trapping level occupation kinetics on interfaces NP/ITO substrate. The observed process is fully reversible. The luminescence is observed only during excitation by the 337 nm laser pulses and is absent for laser pulses operating at other wavelengths (like excimer laser at 218 nm and nitrogen laser at 371 nm).  相似文献   

19.
By means of far-infrared (84 μm) laser cyclotron resonance, it is found that the photoexcited electron system in p-type InSb can enter a spin-hot state. The spin temperature cools down from ∽60 K with a time constant of several microseconds at the lattice temperature 4.2 K. Crude calculation for spin-flipping between 0- and 0+ Landau subbands by electron- impurity scattering yields a reasonable time constant quite comparable with experimental observation.  相似文献   

20.
Spectral broadening of the fluorescence of a Nd/Cr:YAG ceramic at the 1064 nm lasing wavelength was observed, and the amplification properties at a high temperature were investigated by considering cross-relaxation. These ceramics are promising for use as a solid-laser material pumped with solar or lamp light. It has been found that whenever the temperature of a laser medium is high and a spectral shift occurs, a high small-signal gain remains owing to the broad spectral band and the cross-relaxation. This optical property is remarkably different from that of a Nd:YAG laser. For a conventional Nd:YAG laser, the bandwidth at 1064 nm is 0.45 nm, and a reduction in small-signal gain occurs at a temperature of 373 K because the spectral peak shift is 0.005 nm/K. However, for the Nd/Cr:YAG ceramic, the bandwidths are 1.2 and 1.9 nm in the case of 0.1% Cr ion doping and 3% Cr ion doping, respectively, owing to the existence of excited Cr ions and the shortening of the effective Nd ion coherence time. It is prospected that the laser medium can be used at a high temperature of 600 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号