首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition and conformation of complexes of aluminium(III) with isoquercitrin (Iso) have been studied in methanol solution. This molecule presents two potential chelating sites in competition. UV–Vis spectroscopy provides evidence of three different species in neutral solution: Al(Iso)2+ Al(Iso)2 + and Al2(Iso)3+. This last one is formed only if a great quantity of Al(III) is presented in the medium. The first site involved in complexation is the 5-hydroxy-4-keto group. FT-Raman spectroscopy has allowed to confirm this mechanism. The stability constants of this complexes have been determined using the program. In acidic condition, only the first complex is obtained. In alkaline medium, Al(Iso)+ and Al(Iso)2 complexes are formed, the catechol group is then the chelating site involved in these species To propose a molecular conformation for the free isoquercitrin and its complexes in neutral medium, both semiempirical molecular orbital and DFT calculations have been performed. It has been showed that the participation of cynnamoyl and benzoyle mesomeric forms stabilise the structure of Al(Iso)2+. The structural models have been validated by the good agreement between theoretical and experimental electronic spectra.  相似文献   

2.
Structural and conformational properties of two sulfenyl derivatives, trifluoromethanesulfenyl acetate, CF3S-OC(O)CH3 (1), and trifluoromethanesulfenyl trifluoroacetate, CF3S-OC(O)CF3 (2), were determined by gas electron diffraction, vibrational spectroscopy, in particular with IR (matrix) spectroscopy, which includes photochemical studies, and by quantum chemical calculations. Both compounds exist in the gas phase as a mixture of two conformers, with the prevailing component possessing a gauche structure around the S-O bond. The minor form, 15(5)% in 1 and 11(5)% in 2 according to IR(matrix) spectra, possesses an unexpected trans structure around the S-O bond. The C=O bond of the acetyl group is oriented syn with respect to the S-O bond in both conformers. UV-visible broad band irradiation of 1 and 2 isolated in inert gas matrixes causes various changes to occur. Conformational randomization clearly takes place in 2 with simultaneous formation of CF3SCF3. For 1 the only reaction channel detected leads to the formation of CH3SCF3 with the consequent extrusion of CO2. Quantum chemical calculations (B3LYP/6-31G and MP2 with 6-31G and 6-311G(2df,pd) basis sets) confirm the existence of a stable trans conformer. The calculations reproduce the conformational properties for both compounds qualitatively correct with the exception of the B3LYP method for compound 2 which predicts the trans form to be prevailing, in contrast to the experiment.  相似文献   

3.
Pure, highly explosive CF(3)C(O)OOC(O)CF(3) is prepared for the first time by low-temperature reaction between CF(3)C(O)Cl and Na(2)O(2). At room temperature CF(3)C(O)OOC(O)CF(3) is stable for days in the liquid or gaseous state. The melting point is -37.5 degrees C, and the boiling point is extrapolated to 44 degrees C from the vapor pressure curve log p = -1875/T + 8.92 (p/mbar, T/K). Above room temperature the first-order unimolecular decay into C(2)F(6) + CO(2) occurs with an activation energy of 129 kJ mol(-1). CF(3)C(O)OOC(O)CF(3) is a clean source for CF(3) radicals as demonstrated by matrix-isolation experiments. The pure compound is characterized by NMR, vibrational, and UV spectroscopy. The geometric structure is determined by gas electron diffraction and quantum chemical calculations (HF, B3PW91, B3LYP, and MP2 with 6-31G basis sets). The molecule possesses syn-syn conformation (both C=O bonds synperiplanar to the O-O bond) with O-O = 1.426(10) A and dihedral angle phi(C-O-O-C) = 86.5(32) degrees. The density functional calculations reproduce the experimental structure very well.  相似文献   

4.
Here we reported a novel and efficient method for the synthesis of the critical intermediates of branched fluorinated surfactants with CF3CF2CF2C (CF3)2- group using HFPD as starting material. The reaction conditions were mild and easy to handle, which was promisingly applied to the industrial production.  相似文献   

5.
Ethene-, cyclopropane-, 3-butene-, and cyclopropanemethanetellurol have been synthesized by reaction of tributyltin hydride with the corresponding ditellurides and characterized by 1H, 13C, and 125Te NMR spectroscopy and high-resolution mass spectrometry. The tellurols of this series, with a gradually increasing distance between the tellurium atom and the unsaturated group, have been studied by photoelectron spectroscopy and quantum chemical calculations. Two stable conformations of ethenetellurol and cyclopropanetellurol, five of allyltellurol, and four of cyclopropanemethanetellurol were found. In the photoelectron spectrum of vinyltellurol, the huge split between the first two bands indicates a direct interaction between the tellurium lone electron pair and the double bond. In the allyl derivative, a hyperconjugation effect was found for the most stable conformers. In contrast to the vinyl compounds, no direct interaction between the lone electron pair of X (X = O, S, Se, and Te) and the three-membered ring could be observed in the cyclopropyl derivatives. A hyperconjugation-like effect, which is independent of the relative orientation of the X-H group, is found to increase from S to Te. Thus, the type and extent of the interaction between the TeH group and an unsaturated or cyclopropyl moiety are clarified while the first comparison of interactions between the nonradioactive unsaturated chalcogen derivatives is performed.  相似文献   

6.
The microwave spectra of CF3COSH and one deuterated species, CF3COSD, have been investigated by Stark spectroscopy in the 40-80 GHz spectral range at -78 degrees C and by quantum chemical calculations using the HF, MP2, and B3LYP procedures with the aug-cc-pVTZ basis set. The microwave spectrum of one conformer was assigned. The conformations of the COSH and CF3 groups determine the overall conformation of this rotamer. It was not possible experimentally to find precise values for the associated dihedral angles, but it appears that the COSH group is distorted somewhat from an exact synperiplanar arrangement, while the CF3 group is rotated several degrees from a position where one of the C-F bonds eclipses the C-S bond. This rotamer tunnels through a transition state that has an exact Cs symmetry, where one C-F bond eclipses the C-S bond and the COSH group is synperiplanar. Relative intensity measurements yielded 28(15) cm-1 for the tunneling frequency. Two additional vibrationally excited states were assigned and their frequencies determined to be 94(30) and 184(40) cm-1, respectively. The theoretical calculations predict conflicting conformational properties for the identified rotamer. The B3LYP calculations find an exact synperiplanar arrangement for the COSH group, whereas the MP2 and HF calculations predict that this group is distorted slightly form this conformation. One of the C-F bonds is found to eclipse the C-S bond in the B3LYP calculations, while the MP2 calculations predict a slight deviation and the HF calculations a large deviation from the eclipsed position, as the corresponding F-C-C-S dihedral angle is calculated to be 0.9 degrees (MP2) and 27.6 degrees (HF). All three methods of calculations predict that a second rotamer coexists with the identified form but is several kJ/mol less stable. The spectrum of this form, which has overall Cs symmetry and is predicted to have an antiperiplanar conformation for the COSH group with one of the C-F bonds eclipsing the C=O bond, was not identified.  相似文献   

7.
Reaction of C(60) with CF(3)I at 550 degrees C, which is known to produce a single isomer of C(60)(CF(3))(2,4,6) and multiple isomers of C(60)(CF(3))(8,10), has now been found to produce an isomer of C(60)(CF(3))(6) with the C(s)-C(60)X(6) skew-pentagonal-pyramid (SPP) addition pattern and an epoxide with the C(s)-C(60)X(4)O variation of the SPP addition pattern, C(s)-C(60)(CF(3))(4)O. The structurally similar epoxide C(s)-C(60)(C(2)F(5))(4)O is one of the products of the reaction of C(60) with C(2)F(5)I at 430 degrees C. The three compounds have been characterized by mass spectrometry, DFT quantum chemical calculations, Raman, visible, and (19)F NMR spectroscopy, and, in the case of the two epoxides, single-crystal X-ray diffraction. The compound C(s)-C(60)(CF(3))(6) is the first [60]fullerene derivative with adjacent R(f) groups that are sufficiently sterically hindered to cause the (DFT-predicted) lengthening of the cage (CF(3))C-C(CF(3)) bond to 1.60 A as well as to give rise to a rare, non-fast-exchange-limit (19)F NMR spectrum at 20 degrees C. The compounds C(s)-C(60)(CF(3))(4)O and C(s)-C(60)(C(2)F(5))(4)O are the first poly(perfluoroalkyl)fullerene derivatives with a non-fluorine-containing exohedral substituent and the first fullerene epoxides known to be stable at elevated temperatures. All three compounds demonstrate that the SPP addition pattern is at least kinetically stable, if not thermodynamically stable, at temperatures exceeding 400 degrees C. The high-temperature synthesis of the two epoxides also indicates that perfluoroalkyl substituents can enhance the thermal stability of fullerene derivatives with other substituents.  相似文献   

8.
The ESR spectra of radical anions formed by reduction of α-diketones RC(O)C(O)CF3 (R=(CF3)2CF, C6F5, (CF3)3C) with metals (Li, Na, K, Mg, Cd, Zn, Hg, In, and TI) in THF were studied. For R=(CF3)2CF and C6F5, the radical anions are formed ascis-isomers, whereas for R=(CF3)3C,trans-isomers are obtained. Line broadening due to solvation and desolvation of the cation is observed in the latter case. The reduction of α-diketone (CF3)2CFC(O)C(O)CF3 with Group II metals (Mg, Cd, Zn) results in the formation of radical pairs. Translated fromIzvestiya Akadmii Nauk. Seriya Khimicheskaya, No. 11, pp. 2228–2231, November, 1998.  相似文献   

9.
Bis(trifluoroaceto) disulfide CF(3)C(O)OSSOC(O)CF(3) was prepared and studied by Raman, photoelectron spectroscopy (PES), and theoretical calculations. This molecule exhibits gauche conformation with both C=O groups cis to the S-S bond; the structure of the OSSO moiety is characterized by dihedral angle delta(OSSO) = -95.1 degrees due to the sulfur-sulfur lone pair interactions. The contracted S-S bond (1.979 Angstroms) and relatively high rotational barrier (19.29 kcal mol(-1) at the B3LYP/6-31G level) of the delta(OSSO) indicate the partial resonance-induced double bond character in this molecule. After ionization, the ground cationic-radical form of CF(3)C(O)OSSOC(O)CF(3)(*+) adopts a trans planar main-atom structure (delta(OSSO) = 180 degrees and delta(OCOS) = 0 degrees ) with C(2)(h) symmetry. The S-S bond elongates to 2.054 Angstroms, while the S-O bond shortens from 1.755 Angstroms in neutral form to 1.684 Angstroms in its corresponding cationic-radical form. The adiabatic ionization energy of 9.91 eV was obtained accordingly. The first two HOMOs correspond to the electrons mainly localized on the sulfur 3p lone pair MOs: 3ppi {36a (n(A)(S))](-1) and 3ppi [35b (n(B)(S), n(B)(O(C)(=)(O)))](-1), with an experimental energy separation of 0.16 eV. The first vertical ionization energy is determined to be 10.81 eV.  相似文献   

10.
The intermolecular interaction energies of the CH3OCH3? CH4, CF3OCH3? CH4, and CF3OCF3? CH4 systems were calculated by ab initio molecular orbital method with the electron correlation correction at the second order Møller–Plesset perturbation (MP2) method. The interaction energies of 10 orientations of complexes were calculated for each system. The largest interaction energies calculated for the three systems are ?1.06, ?0.70, and ?0.80 kcal/mol, respectively. The inclusion of electron correlation increases the attraction significantly. It gains the attraction ?1.47, ?1.19, and ?1.27 kcal/mol, respectively. The dispersion interaction is found to be the major source of the attraction in these systems. In the CH3OCH3? CH4 system, the electrostatic interaction (?0.34 kcal/mol) increases the attraction substantially, while the electrostatic energies in the other systems are not large. Fluorine substitution of the ether decreases the electrostatic interaction, and therefore, decreases the attraction. In addition the orientation dependence of the interaction energy is decreased by the substitution. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1472–1479, 2002  相似文献   

11.
The hitherto unknown trifluoroselenoacetic acid was prepared through the reaction of trifluoroacetic acid with Woollins' reagent. The compound was fully characterized by mass spectrometry, (1)H, (19)F, (77)Se, and (13)C NMR, UV-visible, IR and Raman spectroscopy, and the boiling point at 46 °C was estimated from the vapor pressure curve. An IR matrix isolation study revealed the presence of two different syn-anti and anti-syn conformers. The IR spectra of the two stereoisomers have been assigned, aided by DFT, and ab initio calculations. The UV photolysis of Ar matrix isolated CF(3)C(O)SeH yielded CO, OCSe, CF(3)SeH, and CHF(3). Apart from CF(3)SeH, these products were also obtained by vacuum flash-pyrolysis (310 °C) of gaseous CF(3)C(O)SeH. Instead of CF(3)SeH, CF(2)Se, and HF were detected among the pyrolysis products. The different decomposition pathways of CF(3)C(O)SeH are discussed.  相似文献   

12.
C70(CF3)16 and C70(CF3)18, the first trifluoromethylated fullerene derivatives to comprise a pair of adjacent CF3 groups, have been isolated from a mixture obtained via reaction of C70 with CF3I, characterized in a single crystal XRD study and theoretically investigated at the DFT level of theory.  相似文献   

13.
The lowest-lying triplet and singlet potential energy surfaces for the O(3P) + C6H6 reaction were theoretically characterized using the "complete basis set" CBS-QB3 model chemistry. The primary product distributions for the multistate multiwell reactions on the individual surfaces were then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. It is newly found that electrophilic O-addition onto a carbon atom in benzene can occur in parallel on two triplet surfaces, 3A' and 3A' '; the results predict O-addition to be dominant up to combustion temperatures. Major expected end-products of the addition routes include phenoxy radical + H*, phenol and/or benzene oxide/oxepin, in agreement with the experimental evidence. While c-C6H5O* + H* are nearly exclusively formed via a spin-conservation mechanism on the lowest-lying triplet surface, phenol and/or benzene oxide/oxepin are mainly generated from the lowest-lying singlet surface after inter-system crossing from the initial triplet surface. CO + c-C5H6 are predicted to be minor products in flame conditions, with a yield < or = 5%. The O + C6H6 --> c-C5H5* + *CHO channel is found to be unimportant under all relevant combustion conditions, in contrast with previous theoretical conclusions (J. Phys. Chem. A 2001, 105, 4316). Efficient H-abstraction pathways are newly identified, occurring on two different electronic state surfaces, 3B1 and 3B2, resulting in hydroxyl plus phenyl radicals; they are predicted to play an important role at higher temperatures in hydrocarbon combustion, with estimated contributions of ca. 50% at 2000 K. The overall thermal rate coefficient k(O + C6H6) at 300-800 K was computed using multistate transition state theory: k(T) = 3.7 x 10-16 x T 1.66 x exp(-1830 K/T) cm(3) molecule(-1) s(-1), in good agreement with the experimental data available.  相似文献   

14.
The preparation of N-acetylpyrazolyl-quinoxalines and results of semiempirical MO calculations are presented. The structure determination of the isomers 3a, b was achieved by X-ray analysis.  相似文献   

15.
Silylhydroxylamines can undergo anionic, neutral and thermal rearrangements. Lithium derivatives of silylhydroxylamines have been used for more than 30 years in such synthesis. They are formed by the reaction of N,O-bis(silyl)hydroxylamines with n-butyl-lithium and crystallize as O-lithium-N,N-bis(silyl)hydroxylamides under silyl group migration from the oxygen to the nitrogen atom. Depending on the reaction conditions and the bulkiness of the substituents, dimeric, trimeric and tetrameric oligomers are isolated. Lithium is bonded end on to the oxygen atom in the dimeric and trimeric silylhydroxylamides and side on to the N-O bond in the tetrameric oligomer.Fluorofunctional bis(silyl)hydroxylamines are excellent precursors for ring systems. In the reactions of dihalosilanes and hydroxylamine the first bis(hydroxylamino)silanes, R2Si(O-NH2)2, areobtained.O-Fluorosilyl- and O-stannyl-N,N-bis(trialkylsilyl)hydroxylamines undergo irreversible dyotropic rearrangements to N-fluorosilyl-N,O-bis(trialkylsilyl)hydroxylamines and N-stannyl-N,O-bis(trialkylsilyl)hydroxylamines, respectively. Thermal rearrangement of tris(silyl)hydroxylamines leads to the formation of silylaminodisiloxanes.Quantum chemical calculations for model compounds demonstrate the course of the dyotropic and thermal rearrangements. The results of these calculations allow the prediction of the resulting isomeric silylaminodisiloxane.  相似文献   

16.
17.
Two novel species, trichloromethanesulfenyl acetate, CCl(3)SOC(O)CH(3), and trichloromethanesulfenyl trifluoroacetate, CCl(3)SOC(O)CF(3), have been generated in situ by the heterogeneous reactions between trichloromethanesulfenyl chloride, CCl(3)SCl, and corresponding silver salts, silver acetate (AgOC(O)CH(3)) and silver trifluoroacetate (AgOC(O)CF(3)), respectively. Photoelectron spectroscopy and quantum chemical calculations are performed to investigate these two molecules, together with their precursor, CCl(3)SCl. Both of these two compounds may exist in the gas phase as a mixture of gauche and trans conformations. As for the dihedral angles delta(RSOR') of the gauche conformers, 107.0 degrees and 108.5 degrees are derived by theoretical calculations (at the B3LYP/6-311+G(3df) level) for CCl(3)SOC(O)CH(3) and CCl(3)SOC(O)CF(3), respectively. The first vertical ionization energies of CCl(3)SOC(O)CH(3) and CCl(3)SOC(O)CF(3), which have been determined by photoelectron spectroscopy, are 9.67 and 10.34 eV, respectively. According to the experimental results and theoretical analysis, the first ionization energy of these two molecules both come from the ionization of the lone pair electron of S atom.  相似文献   

18.
19.
The structure and reactivity of α-ketoradicals, derivatives of (CF3)3CC(O)C(O)CF3 (1), were studied by ESR spectroscopy. The photoreduction of α-diketone1 in a solution of cyclohexane in perfluorodipentyl ether results in the formation of radicals of two types, (CF3)3CC(2)(O(4))·C(3)(O(6)H)CF3 (1a) and (CF3)3C·C(OH)C(O)CF3 (1b) in a ∼40∶1 ratio. The degree of delocalization of the spin density in two conformers of radical1a was calculated by the MNDO/PM3 method in the UHF approximation. It was established that radicals1a and1b are capable of reversible dimerization. The rate constant of dimerization and the enthalpy of the radical—dimer equilibrium were measured for radical1a. A decrease in the rate of dimerization of radical1a upon addition of complexing solvents ((CF3)3COH andp-CF3C6H4CF3) was found. The influence of the solvents on the rate of dimerization was also detected for α-ketoradical (CF3)3CC(O)·C(OSiMe2Ph)CF3 (1c). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 62–67, January, 1998.  相似文献   

20.
The synthesis of CF3OC(O)OOCF3, CF3OC(O)OOC(O)OCF3, and CF3OC(O)OOOC(O)OCF3 is accomplished by the photolysis of a mixture of (CF3CO)2O, CO, and O2. Pure CF3OC(O)OOCF3 and CF3OC(O)OOC(O)OCF3 are isolated after thermal decomposition of CF3OC(O)OOOC(O)OCF3 and repeated trap-to-trap condensation. Additional spectroscopic data of known CF3OC(O)OOCF3 are obtained by recording NMR, IR, Raman, and UV spectra: At room temperature CF3OC(O)OOC(O)OCF3 is stable for days in the liquid or gaseous state. The melting point is -38 degrees C, and the boiling point is extrapolated to 73 degrees C from the vapor pressure curve log p = 8.657-1958/T (p/mbar, T/K). The new compound is characterized by molecular mass determination and by NMR, vibrational, and UV spectroscopy. The new trioxide CF3OC(O)OOOC(O)OCF3 cannot be separated from CF3-OC(O)OOC(O)OCF3 by distillation due to their similar boiling points. CF3OC(O)OOOC(O)OCF3 decomposes at room temperature within hours into a mixture of CF3OC(O)OOC(O)OCF3, CF3OC(O)OOCF3, CO2, and O2. Its characterization is discussed along with a possible mechanism for formation and decomposition reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号