首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
For a finite $p$ -group $G$ and a bounded below $G$ -spectrum $X$ of finite type mod  $p$ , the $G$ -equivariant Segal conjecture for $X$ asserts that the canonical map $X^G \rightarrow X^{hG}$ , from $G$ -fixed points to $G$ -homotopy fixed points, is a $p$ -adic equivalence. Let $C_{p^n}$ be the cyclic group of order  $p^n$ . We show that if the $C_p$ -equivariant Segal conjecture holds for a $C_{p^n}$ -spectrum $X$ , as well as for each of its geometric fixed point spectra $\varPhi ^{C_{p^e}}(X)$ for $0 < e < n$ , then the $C_{p^n}$ -equivariant Segal conjecture holds for  $X$ . Similar results also hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.  相似文献   

2.
Let $G$ be a compact Lie group, $H$ a closed subgroup of maximal rank and $X$ a topological $G$ -space. We obtain a variety of results concerning the structure of the $H$ -equivariant K-ring $K_H^*(X)$ viewed as a module over the $G$ -equivariant K-ring $K_G^*(X)$ . One result is that the module has a nonsingular bilinear pairing; another is that the module contains multiplets which are analogous to the Gross–Kostant–Ramond–Sternberg multiplets of representation theory.  相似文献   

3.
For a group $G$ , denote by $\omega (G)$ the number of conjugacy classes of normalizers of subgroups of $G$ . Clearly, $\omega (G)=1$ if and only if $G$ is a Dedekind group. Hence if $G$ is a 2-group, then $G$ is nilpotent of class $\le 2$ and if $G$ is a $p$ -group, $p>2$ , then $G$ is abelian. We prove a generalization of this. Let $G$ be a finite $p$ -group with $\omega (G)\le p+1$ . If $p=2$ , then $G$ is of class $\le 3$ ; if $p>2$ , then $G$ is of class $\le 2$ .  相似文献   

4.
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$ . In this paper we prove that a finite group $G$ is $p$ -nilpotent if every minimal subgroup of $P\bigcap G^{N}$ is weakly-supplemented in $G$ , and when $p=2$ either every cyclic subgroup of $P\bigcap G^{N}$ with order 4 is weakly-supplemented in $G$ or $P$ is quaternion-free, where $p$ is the smallest prime number dividing the order of $G$ , $P$ a sylow $p$ -subgroup of $G$ .  相似文献   

5.
Let $G$ be a finite group. A subgroup $H$ of $G$ is called an $\mathcal{H }$ -subgroup of $G$ if $N_G(H)\cap H^g\le H$ for all $g\in G$ . A group $G$ is said to be an ${\mathcal{H }}_p$ -group if every cyclic subgroup of $G$ of prime order or order 4 is an $\mathcal{H }$ -subgroup of $G$ . In this paper, the structure of a finite group all of whose second maximal subgroups are ${\mathcal{H }}_p$ -subgroups has been characterized.  相似文献   

6.
A group $G$ is said to be a minimax group if it has a finite series whose factors satisfy either the minimal or the maximal condition. Let $D(G)$ denotes the subgroup of $G$ generated by all the Chernikov divisible normal subgroups of $G$ . If $G$ is a soluble-by-finite minimax group and if $D(G)=1$ , then $G$ is said to be a reduced minimax group. Also $G$ is said to be an $ M_{r}C$ -group (respectively, $PC$ -group), if $G/C_{G} \left(x^{G}\right)$ is a reduced minimax (respectively, polycyclic-by-finite) group for all $x\in G$ . These are generalisations of the familiar property of being an $FC$ -group. Finally, if $\mathfrak X $ is a class of groups, then $G$ is said to be a minimal non- $\mathfrak X $ -group if it is not an $\mathfrak X $ -group but all of whose proper subgroups are $\mathfrak X $ -groups. Belyaev and Sesekin characterized minimal non- $FC$ -groups when they have a non-trivial finite or abelian factor group. Here we prove that if $G$ is a group that has a proper subgroup of finite index, then $G$ is a minimal non- $M_{r}C$ -group (respectively, non- $PC$ -group) if, and only if, $G$ is a minimal non- $FC$ -group.  相似文献   

7.
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$ . $H$ is said to be an $s$ -quasinormally embedded in $G$ if for each prime $p$ dividing the order of $H$ , a Sylow $p$ -subgroup of $H$ is also a Sylow $p$ -subgroup of some $S$ -quasinormal subgroup of $G$ ; $H$ is said to be $c$ -normal in $G$ if $G$ has a normal subgroup $T$ such that $G=HT$ and $H\cap T\le H_{G}$ , where $H_{G}$ is the normal core of $H$ in $G$ . We fix in every non-cyclic Sylow subgroup $P$ of $G$ some subgroup $D$ satisfying $1<|D|<|P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is either $s$ -quasinormally embedded or $c$ -normal in $G$ . Some recent results are generalized and unified.  相似文献   

8.
Let $p$ be the smallest prime divisor of the order of a finite group $G$ . We examine the structure of $G$ under the hypothesis that $p$ -subgroups of $G$ of certain orders are complemented in $G$ . In particular, we extend some recent results.  相似文献   

9.
Let $G$ be a connected and simply connected Lie group with Lie algebra $\mathfrak g $ . We say that a subset $X$ in the set $\mathfrak g ^\star / G$ of coadjoint orbits is convex hull separable when the convex hulls differ for any pair of distinct coadjoint orbits in $X$ . In this paper, we define a class of solvable Lie groups, and we give an explicit construction of an overgroup $G^+$ and a quadratic map $\varphi $ sending each generic orbit in $\mathfrak g ^\star $ to a $G^+$ -orbit in $\mathfrak{g ^+}^\star $ , in such a manner that the set $\varphi (\mathfrak g ^\star _{gen}){/ G^+}$ is convex hull separable. We then call $G^+$ a weak quadratic overgroup for $G$ . Thanks to this construction, we prove that any nilpotent Lie group, with dimension at most 7 admits such a weak quadratic overgroup. Finally, we produce different examples of solvable Lie groups, having weak quadratic overgroups, but which are not in our class of Lie groups and for which usual constructions fail to hold.  相似文献   

10.
Let $X$ be a compact connected Riemann surface and $G$ a connected reductive complex affine algebraic group. Given a holomorphic principal $G$ -bundle $E_G$ over $X$ , we construct a $C^\infty $ Hermitian structure on $E_G$ together with a $1$ -parameter family of $C^\infty $ automorphisms $\{F_t\}_{t\in \mathbb R }$ of the principal $G$ -bundle $E_G$ with the following property: Let $\nabla ^t$ be the connection on $E_G$ corresponding to the Hermitian structure and the new holomorphic structure on $E_G$ constructed using $F_t$ from the original holomorphic structure. As $t\rightarrow -\infty $ , the connection $\nabla ^t$ converges in $C^\infty $ Fréchet topology to the connection on $E_G$ given by the Hermitian–Einstein connection on the polystable principal bundle associated to $E_G$ . In particular, as $t\rightarrow -\infty $ , the curvature of $\nabla ^t$ converges in $C^\infty $ Fréchet topology to the curvature of the connection on $E_G$ given by the Hermitian–Einstein connection on the polystable principal bundle associated to $E_G$ . The family $\{F_t\}_{t\in \mathbb R }$ is constructed by generalizing the method of [6]. Given a holomorphic vector bundle $E$ on $X$ , in [6] a $1$ -parameter family of $C^\infty $ automorphisms of $E$ is constructed such that as $t\rightarrow -\infty $ , the curvature converges, in $C^0$ topology, to the curvature of the Hermitian–Einstein connection of the associated graded bundle.  相似文献   

11.
Let $g$ be an involution of a compact closed manifold $X$ such that the fixed-point set $X^{g}$ is middle dimensional. Under the assumption that the normal bundle of the fixed-point set is either the tangent or co-tangent bundle conditions on the equivariant invariants of $X$ arise. In particular if $X$ is a holomorphic-symplectic manifold and $g$ an anti holomorphic-symplectic involution one arrives at a generalisation of Beauville’s result that for $X$ a hyper-Kähler manifold the $\hat{A}$ genus of $X^{g}$ is one.  相似文献   

12.
Given a finite group $G$ and a subgroup $H\le G$ , we develop a Fourier analysis for $H$ -conjugacy invariant functions on $G$ , without the assumption that $H$ is a multiplicity-free subgroup of $G$ . We also study the Fourier transform for functions in the center of the algebra of $H$ -conjugacy invariant functions on $G$ . We show that a recent calculation of Cesi is indeed a Fourier transform of a function in the center of the algebra of functions on the symmetric group that are conjugacy invariant with respect to a Young subgroup.  相似文献   

13.
Suppose a group $\Gamma $ acts on a scheme $X$ and a Lie superalgebra $\mathfrak {g}$ . The corresponding equivariant map superalgebra is the Lie superalgebra of equivariant regular maps from $X$ to $\mathfrak {g}$ . We classify the irreducible finite dimensional modules for these superalgebras under the assumptions that the coordinate ring of $X$ is finitely generated, $\Gamma $ is finite abelian and acts freely on the rational points of $X$ , and $\mathfrak {g}$ is a basic classical Lie superalgebra (or $\mathfrak {sl}\,(n,n)$ , $n \ge 1$ , if $\Gamma $ is trivial). We show that they are all (tensor products of) generalized evaluation modules and are parameterized by a certain set of equivariant finitely supported maps defined on $X$ . Furthermore, in the case that the even part of $\mathfrak {g}$ is semisimple, we show that all such modules are in fact (tensor products of) evaluation modules. On the other hand, if the even part of $\mathfrak {g}$ is not semisimple (more generally, if $\mathfrak {g}$ is of type I), we introduce a natural generalization of Kac modules and show that all irreducible finite dimensional modules are quotients of these. As a special case, our results give the first classification of the irreducible finite dimensional modules for twisted loop superalgebras.  相似文献   

14.
Let $G$ be a bounded Jordan domain in the complex plane. The Bergman polynomials $\{p_n\}_{n=0}^\infty $ of $G$ are the orthonormal polynomials with respect to the area measure over $G$ . They are uniquely defined by the entries of an infinite upper Hessenberg matrix $M$ . This matrix represents the Bergman shift operator of $G$ . The main purpose of the paper is to describe and analyze a close relation between $M$ and the Toeplitz matrix with symbol the normalized conformal map of the exterior of the unit circle onto the complement of $\overline{G}$ . Our results are based on the strong asymptotics of $p_n$ . As an application, we describe and analyze an algorithm for recovering the shape of $G$ from its area moments.  相似文献   

15.
A subgroup $A$ of a finite group $G$ is said to be $S$ -permutably embedded in $G$ if for each prime $p$ dividing the order of $A$ , every Sylow $p$ -subgroup of $A$ is a Sylow $p$ -subgroup of some $S$ -permutable subgroup of $G$ . In this paper we determine how the $S$ -permutable embedding of several families of subgroups of a finite group influences its structure.  相似文献   

16.
Jamel Jaber 《Positivity》2014,18(1):161-170
Let $X$ be a lattice ordered algebra ( $\ell $ -algebra). A positive element $x\in $ $X$ is said to be totally bounded if $x^{2}\le x$ . The $\ell $ -algebra $X$ is said to have a $\sigma $ -bounded approximate unit if for each positive linear functional $f$ on $X$ the set $\left\{ f(x)\text{: } x \text{ totally } \text{ bounded }\right\} $ is bounded in $\mathbb R $ . In this paper we study the class of $f$ -algebras with a $\sigma $ -bounded approximate unit which contains the class of all unital $f$ -algebras. In particular It is shown that an $f$ -algebra $X$ has a $\sigma $ -bounded approximate unit if and only if the order bidual $X^{\sim \sim }$ is a unital $f$ -algebra.  相似文献   

17.
Let $X$ be a compact nonsingular affine real algebraic variety. We prove that every pre-algebraic vector bundle on $X$ becomes algebraic after finitely many blowing ups. Using this theorem, we then prove that the Stiefel-Whitney classes of any pre-algebraic $\mathbb{R }$ -vector bundle on $X$ are algebraic. We also derive that the Chern classes of any pre-algebraic $\mathbb{C }$ -vector bundles and the Pontryagin classes of any pre-algebraic $\mathbb{R }$ -vector bundle are blow- $\mathbb{C }$ -algebraic. We also provide several results on line bundles on $X$ .  相似文献   

18.
We present several examples of feebly compact Hausdorff paratopological groups (i.e., groups with continuous multiplication) which provide answers to a number of questions posed in the literature. It turns out that a 2-pseudocompact, feebly compact Hausdorff paratopological group $G$ can fail to be a topological group. Our group $G$ has the Baire property, is Fréchet–Urysohn, but it is not precompact. It is well known that every infinite pseudocompact topological group contains a countable non-closed subset. We construct an infinite feebly compact Hausdorff paratopological group $G$ all countable subsets of which are closed. Another peculiarity of the group $G$ is that it contains a nonempty open subsemigroup $C$ such that $C^{-1}$ is closed and discrete, i.e., the inversion in $G$ is extremely discontinuous. We also prove that for every continuous real-valued function $g$ on a feebly compact paratopological group $G$ , one can find a continuous homomorphism $\varphi $ of $G$ onto a second countable Hausdorff topological group $H$ and a continuous real-valued function $h$ on $H$ such that $g=h\circ \varphi $ . In particular, every feebly compact paratopological group is $\mathbb{R }_3$ -factorizable. This generalizes a theorem of Comfort and Ross established in 1966 for real-valued functions on pseudocompact topological groups.  相似文献   

19.
Let $G$ be a real semisimple Lie group with finite center, with a finite number of connected components and without compact factor. We are interested in the homogeneous space of Cartan subgroups of $G$ , which can be also seen as the space of maximal flats of the symmetric space of $G$ . We define its Chabauty compactification as the closure in the space of closed subgroups of $G$ , endowed with the Chabauty topology. We show that when the real rank of $G$ is 1, or when $G={\text{ SL}}_3(\mathbb{R })$ or ${\text{ SL}}_4(\mathbb{R })$ , this compactification is the set of all closed connected abelian subgroups of dimension the real rank of $G$ , with real spectrum. And in the case of ${\text{ SL}}_3(\mathbb{R })$ , we study its topology more closely and we show that it is simply connected.  相似文献   

20.
We prove that a finitely generated pro- $p$ group acting on a pro- $p$ tree $T$ with procyclic edge stabilizers is the fundamental pro- $p$ group of a finite graph of pro- $p$ groups with vertex groups being stabilizers of certain vertices of $T$ and edge groups (when non-trivial) being stabilizers of certain edges of $T$ , in the following two situations: (1) the action is $n$ -acylindrical, i.e., any non-identity element fixes not more than $n$ edges; (2) the group $G$ is generated by its vertex stabilizers. This theorem is applied to obtain several results about pro- $p$ groups from the class $\mathcal L $ defined and studied in Kochloukova and Zalesskii (Math Z 267:109–128, 2011) as pro- $p$ analogues of limit groups. We prove that every pro- $p$ group $G$ from the class $\mathcal L $ is the fundamental pro- $p$ group of a finite graph of pro- $p$ groups with infinite procyclic or trivial edge groups and finitely generated vertex groups; moreover, all non-abelian vertex groups are from the class $\mathcal L $ of lower level than $G$ with respect to the natural hierarchy. This allows us to give an affirmative answer to questions 9.1 and 9.3 in Kochloukova and Zalesskii (Math Z 267:109–128, 2011). Namely, we prove that a group $G$ from the class $\mathcal L $ has Euler–Poincaré characteristic zero if and only if it is abelian, and if every abelian pro- $p$ subgroup of $G$ is procyclic and $G$ itself is not procyclic, then $\mathrm{def}(G)\ge 2$ . Moreover, we prove that $G$ satisfies the Greenberg–Stallings property and any finitely generated non-abelian subgroup of $G$ has finite index in its commensurator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号