首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A theoretical study of 2‐Se‐(2‐methyl‐2‐propenyl)‐1‐benzoic acid was carried out to investigate the molecular and electronic structure of this molecule, using the B3LYP density functional theory (DFT) method with the 6‐311+G** basis set. The optimized geometry of the molecule was obtained for the ortho, meta, and para isomers of the complex. In addition, the theoretical vibrational spectrum is presented, and thermal corrections in the limit of 100–1,000 K are discussed using the Shomate thermodynamic equations. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

2.
The addition of hypophosphorous acid to an azomethine bond of N‐(R)‐α‐methylbenzyl Schiff bases of a variety of aldehydes led to the formation of N‐(R)‐α‐methylbenzylamino‐(S)‐methanephosphonous acids in 100% diastereoselectivity. This fact allows us to suggest the probable mechanism of the Strecker‐like reaction between hypophosphorous acid, an aldehyde, and (R)‐α‐methylbenzylamine. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:35–37, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20406  相似文献   

3.
5‐(Tetrazol‐1‐yl)‐2H‐tetrazole ( 1 ), or 1,5′‐bistetrazole, was synthesized by the cyclization of 5‐amino‐1H‐tetrazole, sodium azide and triethyl orthoformate in glacial acetic acid. A derivative of 1 , 2‐methyl‐5‐(tetrazol‐1‐yl)tetrazole ( 2 ) can be obtained by this method starting from 5‐amino‐2‐methyl‐tetrazole. Furthermore, selected salts of 1 with nitrogen‐rich and metal (alkali and transition metal) cations, including hydroxylammonium ( 4 ), triaminoguanidinium ( 5 ), copper(I) ( 8 ) and silver ( 9 ), as well as copper(II) complexes of both 1 and 2 were prepared. An intensive characterization of the compounds is given, including vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, DSC and single‐crystal X‐ray diffraction. Their sensitivities towards physical stimuli (impact, friction, electrostatic) were determined according to Bundesamt für Materialforschung (BAM) standard methods. Energetic performance (detonation velocity, pressure, etc.) parameters were calculated with the EXPLO5 program, based on predicted heats of formation derived from enthalpies computed at the CBS‐4M level of theory and utilizing the atomization energy method. From the analytical and calculated data, their potential as energetic materials in different applications was evaluated and discussed.  相似文献   

4.
A facile method for the preparation of the novel capping ligand 5‐(2‐mercaptoethyl)‐1H‐tetrazole for the stabilization of water‐soluble nanocrystals was developed. This effective synthetic procedure is based on the cycloaddition of sodium azide to 3,3′‐dithiobis(propionitrile) followed by the reductive cleavage of a S?S bond with triphenylphosphine. The structure of the synthesized compound was confirmed by single‐crystal X‐ray analysis. A target tetrazole was successfully applied for the direct aqueous synthesis of CdTe and Au nanocrystals. CdTe nanocrystals capped with 5‐(2‐mercaptoethyl)‐1H‐tetrazole were found to reveal high photoluminescence efficiencies (up to 77 %). Nanocrystals capped with this tetrazole ligand are able to build 3D structures in a metal‐ion‐assisted gelation process in aqueous solution. Critical point drying of the as‐formed hydrogels allowed the preparation of the corresponding aerogels, while preserving the mesoporous structure.  相似文献   

5.
A new heterocycle consisting of a tetrazole ring attached to an amino‐triazolone ring, namely 5‐(4‐amino‐1,2,4‐triazol‐3‐on‐5′‐yl)‐1H‐tetrazole ( 3 ) as well as its ammonium ( 2 ), hydroxylammonium ( 3 ), and sodium salt ( 4 ), is introduced. Its ammonium salt ( 2 ) is formed starting from tetrazole‐5‐carboxamide oxime ( 1 ), which is reacted with diaminourea (carbonyldihydrazide) in aqueous media. All compounds 2 , 3 , 4 , 5 were structurally characterized by single crystal X‐ray diffraction. The thermal behavior was investigated using differential scanning calorimetry, and the sensitivities towards impact, friction, and electrostatic discharge were determined. Furthermore, several detonation parameters were calculated with the program EXPLO5 to determine the potential use of these compounds as highly energetic materials.  相似文献   

6.
The polymerization of α‐N‐(α′‐methylbenzyl) β‐ethyl itaconamate derived from racemic α‐methylbenzylamine (RS‐MBEI) by initiation with dimethyl 2,2′‐azobisisobutyrate (MAIB) was studied in methanol kinetically and with ESR spectroscopy. The overall activation energy of polymerization was calculated to be 47 kJ/mol, a very low value. The polymerization rate (Rp ) at 60 °C was expressed by Rp = k[MAIB]0.5±0.05[RS‐MBEI]2.9±0.1. The rate constants of propagation (kp ) and termination (kt ) were determined by ESR. kp was very low, ranging from 0.3 to 0.8 L/mol s, and increased with the monomer concentration, whereas kt (4–17 × l04 L/mol s) decreased with the monomer concentration. Such behaviors of kp and kt were responsible for the high dependence of Rp on the monomer concentration. Rp depended considerably on the solvent used. S‐MBEI, derived from (S)‐α‐methylbenzylamine, showed somewhat lower homopolymerizability than RS‐MBEI. The kp value of RS‐MBEI at 60 °C in benzene was 1.5 times that of S‐MBEI. This was explicable in terms of the different molecular associations of RS‐MBEI and S‐MBEI, as analyzed by 1H NMR. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4137–4146, 2000  相似文献   

7.
A novel route was developed for synthesis of high potential 1H‐tetrazoles by using conventional method. Tetrazole scaffold is a promising pharmacophore fragment, frequently used in the development of various novel drugs. Here, the novel (Z)‐3‐(N‐alkyl‐indol‐3‐yl)‐2‐(1H‐tetrazole‐5‐yl)acrylates 5 ( a – i ) have been synthesized from (Z)‐ethyl‐3‐(1H‐indol‐3‐yl)2‐(1H‐tetrazol‐5‐yl)acrylates 4 ( a – c ) by using various alkylating agents such as Dimethyl Sulphate (DMS), Diethyl Sulphate (DES), and benzyl chloride; 4 ( a – c ) were synthesized from sodium azide in the presence of copper sulfate in dimethylformamide; 3 ( a – c ) have been prepared by Knoevenagel condensation of indole‐3‐carbaldehyde 1 ( a – c ) and ethylcyanoacetate 2 in the presence of L‐Proline as a catalyst at room temperature in ethanol for an hour. This is an efficient and clean click chemistry method that has various advantages such as easy workup, higher yields, shorter reaction times, and more economical.  相似文献   

8.
N? C bonded (non‐bridged) 5‐(1,2,3‐triazol‐1‐yl)tetrazoles were synthesized by the CuI‐catalyzed 1,3‐dipolar azide–alkyne cycloaddition click reaction using 5‐azido‐N‐(propan‐2‐ylidene)‐1H‐tetrazole ( 1 ). For example, the click reaction of 1 in the presence of CuSO4?5 H2O and Na ascorbate at 65–70 °C for 48 h in CH3CN/H2O co‐solvent was found to be limited to only terminal alkynes that have electron‐withdrawing groups, CF3C?CH ( 2 a ) and SF5C?CH ( 2 b ), giving rise to isopropylidene‐[5‐(4‐trifluoromethyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 a ) and isopropylidene‐[5‐(4‐pentafluorosulfanyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 b ) in 47 % and 66 % yields, respectively. When carried out under conditions using CuI and 2,6‐lutidine as catalysts at 0 °C for 13 h in CHCl3, the click reaction was versatile toward alkynes even those having electron‐donating groups. Properties of new products were determined and compared with those of 1 . Heats of formation, detonation pressures, detonation velocities and impact sensitivities are reported for these new 5‐(1,2,3‐triazol‐1‐yl)tetrazoles.  相似文献   

9.
A series of 2‐(1H‐1,2,4‐triazol‐1‐yl)‐2H‐1,4‐benzothiazines were designed and synthesized by condensation of 1,2,4‐triazole‐substituted ω‐bromoacetophenones and o‐aminothiophenols with the aid of K2CO3 under mild conditions with moderate to high yields. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:332–336, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20434  相似文献   

10.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   

11.
The ten‐coordinate complex, (HATr)[Na(DNMz)] · H2O ( 1 ) was synthesized by reaction of 5‐(dinitromethylene)‐4,5‐dihydro‐1H‐tetrazole (DNMz), sodium hydroxide, and 3‐hydrazinium‐4‐amino‐1,2,4‐1H‐triazolium dichloride (HATr) in aqueous solution and characterized by various physico‐chemical techniques. Complex 1 is an energetic material with a nitrogen content of 51.2 % and a decomposition temperature of 128.9 °C. The molecular structure of complex 1 crystallizes in the monoclinic system with P2(1)/c group and shows an infinite 1D chain structure. The heat of formation was determined as –122.27 kJ · mol–1 by using bomb calorimetry. In addition, the kinetic parameters were studied by Kissinger's and Ozawa‐Doyle's methods.  相似文献   

12.
The title compound, C7H13N5, a tetrazole analogue of betaines, exists as a zwitterion, with the H atom of the tetrazole ring being transferred to the piperidine ring N atom. The tetrazole ring symmetry is close to C2v, which suggests strong charge delocalization in the N—C—N fragment of the ring. There are classical hydrogen bonds in the structure which are responsible for the formation of two‐membered aggregates.  相似文献   

13.
With anodic alumina with an ordered nanopore array used as a template, poly[2‐metoxy‐5‐(2′‐ethyl‐hexyloxy)‐p‐phenylene vinylene] (MEH–PPV) was embedded into the nanopores, and then two‐dimensional arrays of light‐emitting nanopolymers were prepared. By the measurement and analysis of photoluminescence and photoluminescence excitation spectra of the samples, it was demonstrated that the optical properties of the nano‐MEH–PPV arrays were obviously different from those of MEH–PPV films. The conformations of the MEH–PPV chains in the nanopores, films, and solutions and their effects on the optical properties were examined. It was determined experimentally that the conformations of the MEH–PPV chains in the solutions were maintained in the nano‐MEH–PPV arrays. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3037–3041, 2006  相似文献   

14.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The reaction of 2‐chloro‐4,5‐dihydroimidazole ( 5 ) with 2‐aminobenzohydrazides 6a–e led to the formation of 2‐amino‐N′‐(imidazolidin‐2‐ylidene)benzohydrazides as zwitterions 7a–e , which on treatment with carbon disulfide in the presence of triethylamine afforded 3‐(imidazolidin‐2‐ylideneamino)‐2‐thioxo‐2,3‐dihydroquinazolin‐4(1H)‐ones 8a–e . Compounds 8a–d were further converted into the corresponding 3‐(imidazolidin‐2‐ylideneamino)quinazoline‐2,4(1H,3H)‐diones 9a–d using hydrogen peroxide–sodium hydroxide solution. The structures of the compounds prepared were established by elemental analyses, IR and NMR spectra as well as X‐ray crystallographic analyses of 7e and 9a .  相似文献   

16.
The nitration of 5‐amino‐1H‐tetrazole ( 1 ), 5‐amino‐1‐methyl‐1H‐tetrazole ( 3 ), and 5‐amino‐2‐methyl‐2H‐tetrazole ( 4 ) with HNO3 (100%) was undertaken, and the corresponding products 5‐(nitrimino)‐1H‐tetrazole ( 2 ), 1‐methyl‐5‐(nitrimino)‐1H‐tetrazole ( 5 ), and 2‐methyl‐5‐(nitramino)‐2H‐tetrazole ( 6 ) were characterized comprehensively using vibrational (IR and Raman) spectroscopy, multinuclear (1H, 13C, 14N, and 15N) NMR spectroscopy, mass spectrometry, and elemental analysis. The molecular structures in the crystalline state were determined by single‐crystal X‐ray diffraction. The thermodynamic properties and thermal behavior were investigated by using differential scanning calorimetry (DSC), and the heats of formation were determined by bomb calorimetric measurements. Compounds 2, 5 , and 6 were all found to be endothermic compounds. The thermal decompositions were investigated by gas‐phase IR spectroscopy as well as DSC experiments. The heats of explosion, the detonation pressures, and velocities were calculated with the software EXPLO5, whereby the calculated values are similar to those of common explosives such as TNT and RDX. In addition, the sensitivities were tested by BAM methods (drophammer and friction) and correlated to the calculated electrostatic potentials. The explosion performance of 5 was investigated by Koenen steel sleeve test, whereby a higher explosion power compared to RDX was reached. Finally, the long‐term stabilities at higher temperatures were tested by thermal safety calorimetry (FlexyTSC). X‐Ray crystallography of monoclinic 2 and 6 , and orthorhombic 5 was performed.  相似文献   

17.
In the mol­ecules of 5‐amino‐1‐phenyl­tetrazole, C7H7N5, (I), and 5‐amino‐1‐(1‐naphthyl)­tetrazole, C11H9N5, (II), the tetrazole rings and aryl fragments are not coplanar; corresponding dihedral angles are 50.58 (5) and 45.19 (7)° for the two independent mol­ecules of (I), and 64.14 (5)° for (II). Intermolecular N—H⋯N hydrogen bonds between the amino groups and tetrazole N atoms are primarily responsible for formation of two‐dimensional networks extending parallel to the bc plane in both compounds. The presence of the amino group has a distinct effect on the geometry of the tetrazole rings in each case.  相似文献   

18.
Several N1‐(2‐furanidyl)‐5‐fluorouracil derivatives of α‐hydroxythiophosphonates were synthesized via oxidation by Moffatt's method of N1‐(2‐furanidyl)‐N3‐(hydroxyalkyl)‐5‐fluorouracil, followed by the addition of diethyl thiophosphite. The phosphonate products were obtained by the oxidation of the corresponding thiophosphonates with m‐chloroperoxybenzoic acid. The crystal structure of compound 6a was determined by X‐ray diffraction. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:211–215, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10021  相似文献   

19.
The reaction of methacryloyl chloride with 5‐aminotetrazole gave the polymerizable methacrylamide derivative 5‐(methacrylamido)tetrazole ( 4 ) in one step. The monomer had an acidic tetrazole group with a pKa value of 4.50 ± 0.01 in water methanol (2:1). Radical polymerization proceeded smoothly in dimethyl formamide or, after the conversion of monomer 4 into sodium salt 4‐Na , even in water. A superabsorbent polymer gel was obtained by the copolymerization of 4‐Na and 0.08 mol % N,N′‐methylenebisacrylamide. Its water absorbency was about 200 g of water/g of polymer, although the extractable sol content of the gel turned out to be high. The consumption of 4‐Na and acrylamide (as a model compound for the crosslinker) during a radical polymerization at 57 °C in D2O was followed by 1H NMR spectroscopy. Fitting the changes in the monomer concentration to the integrated form of the copolymerization equation gave the reactivity ratios r 4‐Na = 1.10 ± 0.05 and racrylamide = 0.45 ± 0.02, which did not differ much from those of an ideal copolymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4333–4343, 2002  相似文献   

20.
In the mol­ecule of the title 1,5‐disubstituted tetrazole, C13H17N5, the tetrazole and benzene rings are not coplanar, having a dihedral angle of 42.96 (5)° between them. The piperidine fragment adopts a chair conformation, and there is a non‐classical intramolecular contact between the benzene H atom and the piperidine N atom. Intermolecular C—H⋯π interactions involving the piperidine C—H groups and the benzene rings are responsible for the formation of two‐dimensional networks, extending parallel to the ab plane. These networks are linked together into a three‐dimensional polymeric structure viaπ–π stacking interactions between the tetrazole rings of two adjacent mol­ecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号