首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single‐layer graphene has received much attention because of its unique two‐dimensional crystal structure and properties. In this review, we focus on the graphene devices in solution, and their properties that are relevant to chemical and biological applications. We will discuss their charge transport, controlled by electrochemical gates, interfacial and quantum capacitance, charged impurities, and surface potential distribution. The sensitive dependence of graphene charge transport on the surrounding environment points to their potential applications as ultrasensitive chemical sensors and biosensors. The interfacial and quantum capacitance studies are directly relevant to the on‐going effort of creating graphene‐based ultracapacitors for energy storage.  相似文献   

2.
《Analytical letters》2012,45(11):1687-1701
Abstract

Biosensors are, by definition, sensing devices comprising a biological component (enzyme, antibody, animal or plant cell, oligonucleotide, lipid, microorganisms, etc.) intimately connected to a physical transducer (electrode, optical fiber, vibrating quartz, etc.). This dual configuration permits a quantitative study of the interaction between a drug compound and an immobilized biocomponent. Ideally, biosensors should be readily implemented and allow for low reagent and energy consumption. Enzyme‐based biosensors can be applied in the pharmaceutical industry for monitoring chemical parameters in the production process (in bioreactors). Affinity biosensors are suitable for high‐throughput screening of bioprocess‐produced antibodies and for candidate drug screening. They are suitable for selective and sensitive immunoassays in clinical laboratories and for decentralized detection of drug residues. Enzyme‐based biosensors may be used in hospitals for bedside drug testing, emergency control, in patient treatment control (anticancer therapy) etc. Current research efforts are focused on proteins, tissues, or living cells immobilized in microfabricated configurations for high‐throughput drug screening and discovery. Such devices can comprise several different microelectronic sensors and biosensors sensitive, for example, to pH, temperature, impedance, dissolved oxygen, etc. for a multiparametric monitoring. Of equal new interest are the oligonucleotide‐immobilized biosensors for interactions studies between a surface linked DNA and the target drug or for hybridisation studies. This short review summarizes several recent trends dedicated to the development and application of biosensors in the pharmaceutical arena.  相似文献   

3.
《Electroanalysis》2018,30(9):1888-1896
Graphene is one of the most studied materials ever, owing to its exceptional electronic, mechanical and thermal properties, which allow for many different types of application. In this review, we shall concentrate on the use of graphene and derivatives for electrochemical sensors and biosensors, where emphasis is placed on the importance of surface functionalization as this permits synergistic combinations with other nanomaterials and biomolecules. In addition to describing recent advances in graphene‐based electroanalytical applications, we discuss a few examples of their use in detecting small biomolecules and in immunosensing for a few diseases using films and composites. Also discussed are the possible methods for mass production of graphene, which is key to low‐cost biosensors for implantable devices and portable systems in point‐of‐care diagnosis.  相似文献   

4.
《Electroanalysis》2006,18(18):1737-1748
Layer‐by‐layer (LBL) assemblies, which have undergone great progress in the past decades, have been used widely in the construction of electrochemical biosensors. The LBL assemblies provide a strategy to rationally design the properties of immobilized films and enhance the performance of biosensors. The following review focuses on the application of LBL assembly technique on electrochemical enzyme biosensors, immunosensors and DNA sensors.  相似文献   

5.
《Analytical letters》2012,45(11):2067-2096
Abstract

Nanostructures such as nanotubes (NTs), nanowires (NWs), and nanoparticles present new opportunities as sensing platforms for biological and environmental applications. Having micrometer‐scale lengths and nanometer‐scale diameters, NTs and NWs can be manipulated with current microfabrication, as well as self‐assembly techniques to fabricate nanoscale devices and sensors. Alignment, uniform dispersion, selective growth, and diameter control are parameters that are critical to the successful integration of nanostructures into sensors and devices. Overcoming these challenges should lead to sensors with better selectivity, sensitivity, and longer operational lifetime. This review discusses biosensors based on nanostructured material.  相似文献   

6.
《Electroanalysis》2005,17(1):7-14
This review addresses recent advances in carbon‐nanotubes (CNT) based electrochemical biosensors. The unique chemical and physical properties of CNT have paved the way to new and improved sensing devices, in general, and electrochemical biosensors, in particular. CNT‐based electrochemical transducers offer substantial improvements in the performance of amperometric enzyme electrodes, immunosensors and nucleic‐acid sensing devices. The greatly enhanced electrochemical reactivity of hydrogen peroxide and NADH at CNT‐modified electrodes makes these nanomaterials extremely attractive for numerous oxidase‐ and dehydrogenase‐based amperometric biosensors. Aligned CNT “forests” can act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centers of enzymes. Bioaffinity devices utilizing enzyme tags can greatly benefit from the enhanced response of the biocatalytic‐reaction product at the CNT transducer and from CNT amplification platforms carrying multiple tags. Common designs of CNT‐based biosensors are discussed, along with practical examples of such devices. The successful realization of CNT‐based biosensors requires proper control of their chemical and physical properties, as well as their functionalization and surface immobilization.  相似文献   

7.
Point‐of‐care (PoC) biosensors offer promising solutions to today's adverse and costly healthcare issues by moving diagnostic tools closer to the patient. The ubiquity of smartphones has brought about an emergence of PoC devices, which leverage the smartphone's capabilities, enabling the creation of low‐cost and portable biosensors. Electrochemical biosensors are well suited for PoC testing since the transducers can be miniaturized and inexpensively fabricated. This review paper discusses recent developments in smartphone‐based electrochemical biosensors for PoC diagnostics. These peripherals utilize the various connectivity options (for example proprietary ports, audio headphone‐jack, or wireless radio) to offload functionality to the smartphone. The smartphone‐based implementations of various electrochemical techniques, such as amperometry, potentiometry, and impedance spectroscopy are explored. Major challenges include reducing power, area, and cost of measurement circuitry, while maintaining adequate performance for PoC diagnostic applications.  相似文献   

8.
《Electroanalysis》2006,18(4):319-326
The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. Many kinds of nanoparticles, such as metal, oxide and semiconductor nanoparticles have been used for constructing electrochemical sensors and biosensors, and these nanoparticles play different roles in different sensing systems. The important functions provided by nanoparticles include the immobilization of biomolecules, the catalysis of electrochemical reactions, the enhancement of electron transfer between electrode surfaces and proteins, labeling of biomolecules and even acting as reactant. This minireview addresses recent advances in nanoparticle‐based electrochemical sensors and biosensors, and summarizes the main functions of nanoparticles in these sensor systems.  相似文献   

9.
In this review, we detail the evolution and recent progress of glove‐based wearable electrochemical sensors with focus on forensic, security, and defense applications. Glove‐based wearable sensors offer the ability to have rapid, on‐site chemical and biological threat assessment, ranging from explosive and gunshot residues to drugs of abuse and pesticides, critical for timely and informed incident management and investigation. Additionally, these field deployable systems offer the ability for law enforcement to complete on‐the‐spot qualitative chemical testing for immediate forensic evidence collection in connection to mechanical ‘swipe’ sampling. Recent advances have been made for translation of this class of wearable electrochemical sensors to increase the sensory perspective of robotics, demonstrating the progression to robotic skin with chemical analysis capability suitable for translation to remote chemical analysis in hazardous scenarios. Critical to such progress have been advances in flexible electrochemically‐compatible materials and design, with increasing functionality, leveraging from advances in wearable biosensors and electronic miniaturization. Indeed, the customization potential of these wearable systems is great, yet challenges remain for advancing these systems from prototypes to more ubiquitous devices readily deployed in the field. With significant attention these challenges can be overcome, creating new opportunities for further decentralization of electrochemical analyses using these flexible and intuitive glove‐based wearable sensing systems for significant impact on fields such as forensics, defense, biomedical, robotics and beyond.  相似文献   

10.
Electrochemical sensors are essential for point‐of‐care testing (POCT) and wearable sensing devices. Establishing an efficient electron transfer route between redox enzymes and electrodes is key for converting enzyme‐catalyzed reactions into electrochemical signals, and for the development of robust, sensitive, and selective biosensors. We demonstrate that the site‐specific incorporation of a novel synthetic amino acid (2‐amino‐3‐(4‐mercaptophenyl)propanoic acid) into redox enzymes, followed by an S‐click reaction to wire the enzyme to the electrode, facilitates electron transfer. The fabricated biosensor demonstrated real‐time and selective monitoring of tryptophan (Trp) in blood and sweat samples, with a linear range of 0.02–0.8 mm . Further developments along this route may result in dramatic expansion of portable electrochemical sensors for diverse health‐determination molecules.  相似文献   

11.
In this review, PEDOT–PSS is mainly a commercially available PEDOT–PSS, which is a water‐dispersible form of the intrinsically conducting PEDOT doped with the water‐soluble PSS, including its derivatives, copolymers, analogs (PEDOT:PSSs), even their composites via the chemical or physical modification toward the structure of PEDOT and/or PSS. First, we will focus on discussing the scientific importance of PEDOT–PSS in conjunction with its extraordinary properties and broad multidisciplinary applications in organic/polymeric electronics and optoelectronics from the viewpoint of the historical development and the promising application of representative ECPs. Subsequently, versatile film‐forming techniques for the preparation of PEDOT–PSS film electrode were described in details, including common coating approaches and printing techniques, and many emerging preparative methods were mentioned. Then challenges (e.g., conductivity, stability in Water, adhesion to substrate electrode) of PEDOT–PSS film electrode for devices under the high humidity/watery circumstances, especially electrochemical devices are discussed. Fourth, we take PEDOT–PSS film electrode for a relatively new application in sensors as an example, mainly summarized advances in the development of various sensors based on PEDOT–PSSs and their composites in combination with its preparative methods and extraordinary properties. Finally, we give the outlook of PEDOT–PSS for possible applications with the emphasis on PEDOT–PSS film electrode for electrochemical devices, including sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1121–1150  相似文献   

12.
The current generation of solid‐contact ion‐selective electrodes (SC‐ISE) suffer from lack of stability and lifetime. When using such sensors for remote, continuous, or autonomous measurements, these analytical characteristics are especially critical. In this work we compare several different configurations of ISEs to be deployed for monitoring in extreme environments, and present a novel configuration to improve performance. In particular we compare a polymeric hydrogel‐based ISE, used previously in the Wet Chemistry Lab on the Phoenix Mars Lander, with three variations of solid supported nanoporous carbon‐based ISEs. The symmetric membrane (SM) solid contact ISE (SM‐SC‐ISE) shows promise in overcoming many of the analytical problems encountered with hydrogel and solid‐state devices. The results indicate that sensors based on the SM configuration provide improvements in both stability, and most importantly reproducibility, over other existing SC‐ISEs. Future work will continue testing the SM configuration for use in a variety of extreme environments, including continuous monitoring and in‐situ analyses in extraterrestrial environments.  相似文献   

13.
Single-walled carbon nanotubes (SWNTs) have received much attention in nanotechnology because of their potential applications in molecular electronics, field-emission devices, biomedical engineering, and biosensors. Carbon nanotubes as gene and drug delivery vectors or as "building blocks" in nano-/microelectronic devices has been successfully explored. However, since SWNTs lack chemical recognition, SWNT-based electronic devices and sensors are strictly related to the development of a bottom-up self-assembly technique. Here we present an example of using DNA duplex-based protons (H(+)) as a fuel to control reversible assembly of SWNTs without generation of waste duplex products that poison DNA-based systems.  相似文献   

14.
Ming Zhou 《Electroanalysis》2015,27(8):1786-1810
Biofuel cells (BFCs) based on enzymes and microorganisms have been recently received considerable attention because they are recognized as an attractive type of energy conversion technology. In addition to the research activities related to the application of BFCs as power source, we have witnessed recently a growing interest in using BFCs for self‐powered electrochemical biosensing and electrochemical logic biosensing applications. Compared with traditional biosensors, one of the most significant advantages of the BFCs‐based self‐powered electrochemical biosensors and logic biosensors is their ability to detect targets integrated with chemical‐to‐electrochemical energy transformation, thus obviating the requirement of external power sources. Following my previous review (Electroanalysis­ 2012 , 24, 197–209), the present review summarizes, discusses and updates the most recent progress and latest advances on the design and construction of BFCs‐based self‐powered electrochemical biosensors and logic biosensors. In addition to the traditional approaches based on substrate effect, inhibition effect, blocking effect and gene regulation effect for BFCs‐based self‐powered electrochemical biosensors and logic biosensors design, some new principles including enzyme effect, co‐stabilization effect, competition effect and hybrid effect are summarized and discussed by me in details. The outlook and recommendation of future directions of BFCs‐based self‐powered electrochemical biosensors and logic biosensors are discussed in the end.  相似文献   

15.
Electroanalysis has obtained considerable progress over the past few years, especially in the field of electrochemical sensors. Broadly speaking, electrochemical sensors include not only conventional electrochemical biosensors or non-biosensors, but also emerging electrochemiluminescence (ECL) sensors and photoelectrochemical (PEC) sensors which are both combined with optical methods. In addition, various electrochemical sensing devices have been developed for practical purposes, such as multiplexed simultaneous detection of disease-related biomarkers and non-invasive body fluid monitoring. For the further performance improvement of electrochemical sensors, material is crucial. Recent years, a kind of two-dimensional (2D) nanomaterial MXene containing transition metal carbides, nitrides and carbonitrides, with unique structural, mechanical, electronic, optical, and thermal properties, have attracted a lot of attention form analytical chemists, and widely applied in electrochemical sensors. Here, we reviewed electrochemical sensors based on MXene from Nov. 2014 (when the first work about electrochemical sensor based on MXene published) to Mar. 2021, dividing them into different types as electrochemical biosensors, electrochemical non-biosensors, electrochemiluminescence sensors, photoelectrochemical sensors and flexible sensors. We believe this review will be of help to those who want to design or develop electrochemical sensors based on MXene, hoping new inspirations could be sparked.  相似文献   

16.
Preparation and application of a conductive organic salt complex of tetrathiafulvalene‐tetracyanoquinodimethane (TTF‐TCNQ) for analytical bioelectrochemistry as a mediator is overviewed in this work. The third‐generation biosensors based on this charge transfer salt are very promising for biosensors applied in vivo. Such mediated biosensors have been studied mainly for glucose determination, but at present other substrates are being applied in this system more and more often.  相似文献   

17.
A simple and controllable electrodeposition approach was proposed for one‐step construction of glucose biosensors by in situ co‐deposition of ferrocene‐branched chitosan derivatives (CS‐Fc), multiwalled carbon nanotubes (MWNTs), and glucose oxidase (GOD) onto electrode surface. The formation of CS‐Fc could not only effectively prevent the leakage of Fc and retain its electrochemical activity, but also provide a biocompatible microenvironment for retaining the native activity of the immobilized biomolecules. Further entrapment of MWNTs into the CS matrix improved electronic conductivity of the biocomposite significantly. The facile procedure of immobilizing GOD and the promising feature of biocomposite will offer a versatile platform to fabricate biosensors and bioelectronic devices.  相似文献   

18.
Free‐standing nanoparticle films are of great importance for developing future nano‐electronic devices. We introduce a protein‐based fabrication strategy of free‐standing nanoparticle monolayer films. α‐Synuclein, an amyloidogenic protein, was utilized to yield a tightly packed gold‐nanoparticle monolayer film interconnected by protein β‐sheet interactions. Owing to the stable protein–protein interaction, the film was successfully expanded to a 4‐inch diameter sheet, which has not been achieved with any other free‐standing nanoparticle monolayers. The film was flexible in solution, so it formed a conformal contact, surrounding even microspheres. Additionally, the monolayer film was readily patterned at micrometer‐scale and thus unprecedented double‐component nanoparticle films were fabricated. Therefore, the free‐floating gold‐nanoparticle monolayer sheets with these properties could make the film useful for the development of bio‐integrated nano‐devices and high‐performance sensors.  相似文献   

19.
Graphite electrodes fabricated by screen-printing have been used as amperometric detectors in biosensors based on NAD(+)-dependent dehydrogenases, tyrosinase, or genetically modified acetylcholinesterases. The mono-enzyme sensors have been optimized as disposable or reusable devices for detection of a variety of substrates important in the food industry ( D-lactic acid, L-lactic acid, acetaldehyde) or in environmental pollution control (phenols and dithiocarbamate, carbamate and organophosphorus pesticides). The sensors were prepared in four configurations differing in enzyme confinement, enzyme immobilization and location of the immobilization agent in the biosensor assembly. Tests on real samples have been performed with the biosensors; D-lactic acid and acetaldehyde have been detected in wine and phenols in air.  相似文献   

20.
The influence of mechanical contortion upon the electrochemical performance of screen‐printed graphite paper‐based electroanalytical sensing platforms is evaluated and contrasted with traditionally employed polymeric based screen‐printed graphite sensors. Such a situation of implementation can be envisaged for the potential sensing of analytes on the skin where such sensors are based, for example in clothing where mechanical contortion, viz, bending will occur, and as such, its effect upon electrochemical sensors is of both fundamental and applied importance. The effect of mechanical contortion or stress upon electrochemical behaviour and performance is of screen printed sensors is explored. Comparisons are made between both paper‐ and polymeric‐ based sensing platforms that are evaluated towards the sensing of the well characterised electrochemical probes potassium ferrocyanide(II), hexaammine‐ruthenium(III) chloride and nicotinamide adenine dinucleotide (NADH). It is determined that the paper‐based sensors offer greater resilience in terms of electrochemical performance after mechanical stress. We gain insights into the role played by both the effect of the time of mechanical contortion and additionally the potentially detrimental effects of repeated contortion are explored. These unique paper‐based sensors hold promise for widespread applications where flexible and ultra‐low cost sensors are required such as applications into medical devices were ultra‐low cost sensors are a pre‐requisite, but also for utilisation within applications which require the implementation of ultra‐flexible electroanalytical sensing platforms such as in the case of wearable sensors, whilst maintaining useful electrochemical performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号