首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed rare earth oxide (Dy1‐xErx)2O3 (0.0 ≤ x ≤ 1.0) were synthesized by a sol–gel process. X‐ray and neutron diffraction data were collected and crystal structure and microstructure analyses were performed using Rietveld refinement method. All samples were found to have the same crystal structure and formed solid solutions over the whole range of x. Preferential cationic distribution is found for all samples but with different extent with Dy3+ preferring the 8b among the two non‐equivalent sites 8b and 24d of the space group Ia3. The lattice parameter is found to vary linearly with the composition x and a systematic variation is found in the r.m.s microstrain . Magnetization measurements were done in the temperature range 5‐300 K and a behavior in accordance with Curie‐Weiss law was found. Anomalous concentration dependence is found in magnetic susceptibility which is ascribed to the concentration dependence of effective crystal field combined with the contribution of 4I15/2 and 6H15/2 manifold at elevated temperature. The effective magnetic moments μeff is found to decrease linearly with composition parameter x, except for sample x=0.5 where the magnetization is enhanced. The Curie‐Weiss paramagnetic temperatures indicated antiferromagnetic interaction. These magnetic results are discussed in view of the cationic distribution. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Most of commercial dosimetric phosphors consist of suitably doped polycrystalline compounds. Whereas the activation issue has been usually addressed, less attention has been paid to the influence of host preparation in the final perfomance of the products. In this paper different routes have been followed to synthesise phosphors based on rare‐earth doped strontium borates. The structural and optical properties of the materials have been given special consideration. Finally, thermoluminescence glow curves have been recorded in order to assess which of the preparation routes yields the most efficient compound. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Elliptic NdCrO3 microplates were synthesized by a simple and facile one‐step hydrothermal method of processing temperature 280 °C for 3 days. The products prepared in this paper have been characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), X‐ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR) and field‐emission scanning electron microscopy (FESEM). The magnetic properties of the final sample are also studied. The XRD pattern indicates the pure orthorhombic phase for NdCrO3 particles, the XPS, XRF and FTIR results further demonstrate the composition and purity of the final product. A possible growth mechanism for elliptic NdCrO3 microplates is proposed. Through the investigation of magnetic properties, it can be generally concluded that the orthorhombic elliptic NdCrO3 microplates exhibit typical behaviors of magnetic transition, spin reorientation transition and magnetic exchange bias. The Néel temperature is 218 K and the spin reorientation transition temperature is 46 K. The hysteresis loop under 5 K shows that the value of exchange bias field (Hex) is 12 Oe and the shift of remanent magnetization (ΔM) is 0.008 emu/g, respectively.  相似文献   

4.
Rare‐earth (RE) elements present in the growth melt of the LPE process are known to have a purifying effect on the grown layers of III‐V compounds. The RE atoms exhibit high chemical affinity preferentially to shallow donors, forming insoluble aggregates that remain in the melt and do not, ordinarily, enter the solid phase. The aim of the paper is to simulate the situation, sometimes observed experimentally, where the gradual gettering of donor impurity, consequent upon increasing the RE content in the melt, leads to an inversion of the electrical conductivity type of the grown layer from n to p. Usefulness of the approach is demonstrated by interpreting results of an experimental work. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Yb: LuPO4 crystals with the size up to 6×2×0.5mm3 were grown by the flux growth process using lead pyrophosphate Pb2P2O7 as the high‐temperature solvent. The crystal structure of Yb: LuPO4 crystals at room temperature was refined by using single crystal X‐ray diffraction data. Crystal structure analysis showed that Yb: LuPO4 crystals possessed the tetragonal xenotime structure. The polarized absorption spectra of Yb: LuPO4 were tested at room temperature. The results showed that the absorption spectral region of Yb: LuPO4 crystal was well matched for pumping with readily available diode lasers.  相似文献   

6.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

7.
Dendrite and platelet‐like α‐Fe2O3 microcrystals were synthesized by the oxidation reaction of K4Fe(CN)6and NaClO3 through a simple hydrothermal method. The structures and morphologies of the as‐prepared samples were characterized in detail by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experiment results show that NaOH played an important role in controlling the morphology of the final products. The possible mechanism was discussed to elucidate the formation of different morphologies of the α‐Fe2O3 microstructures. Besides, the magnetic property of the dendrite α‐Fe2O3 microstructure was characterized by a vibrating sample magnetometer (VSM). (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The tetragonally double alkaline rare earth molybdates NaRe(MoO4)2 (Re = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) micro‐particles in aqueous solution of Re(NO3)3 and Na2MoO4 were prepared hydrothermally by a facile and effective EDTA‐assisted method, and investigated by XRD, SEM, FE‐SEM, photoluminescence (PL) excitation and emission spectra. The results showed that the radii of Re ions, pH and the molar ratio of Re(NO3)3/Na2MoO4 in the synthesis solution play an important role in controlling sizes, morphologies and luminescent properties of the final products. And the possible formation mechanism for the bipyramid‐like structure and role of EDTA were discussed in detail. The microstructure and PL property of NaYxLa1‐x(MoO4)2:10%Eu3+ was investigated, and it showed that NaY0.5La0.5(MoO4)2 exhibited regular sphere‐like morphology and emitted the stronger red emission with better color purity than other products. When Tm3+, Dy3+ and Eu3+ with appropriate concentrations were used as dopants to modify this bipyramid NaY(MoO4)2 material, the white light emission material of NaY(MoO4)2:1%Tm3+‐11%Dy3+‐0.6%Eu3+ was successfully synthesized and its CIE chromaticity coordinates is (0.33, 0.33), which is the standard white light point. These novel white‐light‐emitting NaY(MoO4)2:1%Tm3+‐11%Dy3+‐0.6%Eu3+ with single phase would be a promising material in the WLED field.  相似文献   

9.
The mixed oxide (Gd1‐xYx)2O3 (0.0 ≤ x ≤ 1.0) were synthesized, as powder and thin film, by a sol‐gel process. X‐ray diffraction data were collected and crystal structure and microstructure analysis were performed using Rietveld refinement method. All samples were found to have the same crystal system and formed solid solutions over the whole range of x. The cationic distribution, Gd3+ and Y3+, over the two non‐equivalent sites 8b and 24d of the space group Ia3 is found to be random for all values of (x). The lattice parameter is found to vary linearly with the composition (x). Replacing Gd3+ and Y3+ by each other introduces a systemic decrease in the x‐coordinate of cation position (24d) and slight changes in the oxygen coordinates. Crystallite size and microstrain analysis is performed along different crystallographic directions and anisotropic changes are found with the composition parameter (x). The average crystallite size ranges from 75 to 149 nm and the r.m.s strain from 0.027 to 0.068 x10‐2. Textured Gd1.841Y0.159O3 (400) buffer layers, with a high degree of alignment in both out‐plane and in‐plan, are successfully grown on cube textured Ni (001) tape substrates by sol–gel dip coating process. The resulting buffer layers are crack‐free, pinhole‐free, dense and smooth. YbBa2Cu3O7‐x (YbBCO) thin film could be (00l) epitaxially grown on the obtained buffer layer using sol–gel dipping technique. (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We report synthesis of α‐Fe2O3 (hematite) nanorods by reverse micelles method using cetyltrimethyl ammonium bromide (CTAB) as surfactant and calcined at 300 °C. The calcined α‐Fe2O3 nanorods were characterized by X‐ray diffraction (XRD), high‐resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The result showed that the α‐Fe2O3 nanorods were hexagonal structure. The nanorods have diameter of 30‐50 nm and length of 120‐150 nm. The weak ferromagnetic behavior was observed with saturation magnetization = 0.6 emu/g, coercive force = 25 Oe and remanant magnetization = 0.03 emu/g. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The current paper focuses on the solidification characteristics of a Cu‐Sb eutectic alloy in its different liquid states. Liquid alloy resistivity‐temperature patterns suggest an irreversible temperature‐induced liquid‐liquid structure transition (TI‐LLST), and a reversible TI‐LLST occurred during the heating‐cooling runs. A set of solidification experiments was conducted based on the results. The irreversible TI‐LLST caused an enhanced solidification undercooling, increased solidification rate, refined regular eutectic morphologies, and absence of a pre‐eutectic Cu2Sb phase. The reversible TI‐LLST resulted in different phase compositions and eutectic structures. The mechanisms behind these transitions are also briefly discussed.  相似文献   

12.
The Rare earth mixed oxides Dy2‐xHox O3 (0.0 ≤ x ≤ 2.0) solid solution was synthesized by a sol–gel process. X‐ray diffraction (XRD) data were collected and crystal structure and microstructure analyses were performed applying Rietveld refinement method. Infrared and Raman spectroscopy were used to define the microstructure and to locally probe the structure of the samples. The cationic distribution over the two non‐equivalent sites 8b and 24d of the space group Ia3 is found to be randomly. The crystallite size and microstrain as well as Raman modes positions are influenced by Ho3+ concentration. The apparent size is isotropic but significant anisotropy is found for the microstrain with its largest value along the crystallographic direction [h00]. Inspite the single phase solid solution confirmed by Rietveld analysis for all samples, Raman spectra detected the coexistence of two phases; cubic and distorted monoclinic of too small amount or highly disordered, i.e. amorphous like, to be detected by XRD. The result indicates the ability of Raman spectroscopy to detect minor phases in solid solutions. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Nanocrystalline holmium aluminium garnet (Ho3Al5O12) has been prepared for the first time by modified Pechini's reaction after sintering the precursor gel at 1223 K. The nanomaterial has been characterized by X‐ray diffraction (XRD), selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The XRD pattern confirms the formation of single‐phase Ho3Al5O12; the average size of the nanoparticles has also been determined. X‐ray photoelectron spectroscopy (XPS) has been used to study the chemical composition and bonding in the as‐prepared samples. The binding energies of core‐level electrons in Ho, Al and O in the title material have been found slightly shifted compared to the values of the respective elements. DC magnetic susceptibility has been measured in the temperature range 2 – 260 K. Low effective magnetic moment of Ho3+, μeff = 1.35 µB and Weiss constant have been derived from the inverse magnetic susceptibility–temperature linear plot. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
ZnO thin films with various Co doping levels (0%, 1%, 3%, 5%, 8%, respectively) have been synthesized by sol gel spin coating method on glass substrates. XRD and XPS studies of the films reveal that cobalt ions are successfully doped into ZnO crystal lattice without changing the hexagonal wurtzite structure. The morphologies are studied by SEM and AFM and show wrinkle network structures with uniform size distribution. With Co doping concentration increasing, the wrinkle network width decreases gradually. The transmittance spectra indicate that Co doping can effectively reduce the optical bandgap of ZnO thin films. Photoluminescence show that all samples have ultraviolet, violet and green emission. When Co doping concentration increases up to 5%, the intensity of violet emission is greatly increased and a strong deep blue emission centered at 439 nm appears. The ferromagnetism of all samples was observed at room temperature. The emission mechanisms and ferromagnetism origination are discussed in detail. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The effect of post treatment on the photorefractive properties of Ru‐doped lithium niobate was studied. The absorption spectra examination of Ru‐doped LiNbO3 crystals with different post treatments showed that the absorption coefficient at 530 nm increased after the reduced treatment was employed and the absorption edge of the reduced crystal shifted towards the infrared band. On the contrary, the trend reversed after the oxidized treatment was employed. In addition, the photorefractive properties were investigated with the two‐beam coupling method conducted via a 532 nm solid state laser. It was found that the oxidized Ru:LiNbO3 had smaller exponential gain coefficient and diffraction efficiency because the charges in the shallow level were exchanged to the deep level. On the other hand, the reduced Ru:LiNbO3 crystals had larger exponential gain coefficient and diffraction efficiency due to the increase of the Ru3+ which existed in the shallow level. The response times of both oxidized and reduced Ru:LiNbO3 were longer than those of the as‐grown ones. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Bi4‐xSbxTi3O12 (BSTO) (x = 0, 0.03, 0.04, 0.05, 0.06 and 0.07) thin films have been fabricated on Pt/Ti/SiO2/Si substrates by sol‐gel method. The effects of various Sb3+ content on microstructure and ferroelectric properties of systems are investigated. XRD show that Bi4‐xSbxTi3O12 (x≠0) thin films prefer (117) orientation. The substitution Sb3+ for Bi3+ reduces the grain size of the film surface. Compared to the BTO (x = 0) film, Bi4‐xSbxTi3O12 films display exciting electric properties. Especially when x = 0.04, the film Bi3.96Sb0.04Ti3O12 has achieved the max 2Pr value of 87μC/cm2. This film also has a better anti‐fatigue characteristic, which can be up to 1010 switching cycles without fatigue. The leakage current density improved with J = 8×10−8 A/cm2.  相似文献   

17.
《Journal of Non》2006,352(32-35):3518-3521
Samples of the magnetic glass–ceramics SiO2–BaFe12O19 were obtained from mixtures of Fe2O3–BaSO4–SiO2–Na2CO3–CaCO3 following a two-step route. The samples were characterized using XRD analysis and scanning electron microscopy, and their room temperature magnetization hysteresis loops were measured. It was found that the magnetic phase was completely developed in the precursor BaFe12O19 material when it was calcinated above 1000 °C. The size of the particles of the BaFe12O19 phase depends on the thermal treatment conditions and on the SiO2 concentration. The magnetic data showed that the high value of the coercive magnetic field is preserved despite the fact that both the remanent and the saturation magnetizations diminish substantially.  相似文献   

18.
Large single crystals of lanthanide hydroxides [Ln(OH)3 (Ln = La, Pr, Nd, Sm, Eu and Tb)] up to several millimeters have been grown by using solid KOH assisted hydrothermal method. Eu(OH)3 samples, as a representative of the Ln(OH)3 crystals, were characterized by X‐ray diffraction (XRD), 4‐circle single‐crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). FESEM image shows hexagonal prism morphology for the Eu(OH)3 large crystals. Research on the photoluminescence and magnetic properties of Eu(OH)3 species was conducted.  相似文献   

19.
Substituted barium hexaferrites, BaFe12‐2xZnxTixO19 (0 ≤ x ≤ 2), have been synthesized by thermal decomposition of freeze‐dried acetate precursors. Decomposition and phase formation were investigated by means of thermal analysis, XRD and IR spectroscopy. The initially amorphous decomposed precursor reacts to the substituted hexaferrite via a spinel‐like maghemite (γ‐Fe2O3) and Zn/Ti containing spinel ferrites. The synthesis method allows a decrease of the reaction temperature and time, necessary for producing a single phase hexaferrite. At relative low reaction temperatures, the substitution rate x shows remarkable differences at different iron sublattices. For x ≤ 0,8 this selective substitution results in an increase of magnetization as x grows. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This paper presents a comparative study of nanocrystallisation and the wear resistance of electroless plated Ni‐P/Ni‐W‐P duplex coatings with a single Ni‐W‐P coating before and after high‐ power diode laser treatment. Effects of the laser operating parameters on microstructures, in terms of crystallisation, porosity formation, phase transformation and grain growth, were investigated using scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) and quantitatively X‐ray Diffraction (XRD). Microhardness and wear behaviour of the coatings before and after laser treatment were evaluated by measurement of coating surface and cross‐section hardness as well as un‐lubricated friction and wear tests. The results revealed that in the case of laser treatment, the Ni‐P/Ni‐W‐P duplex coatings offered better wear resistance than the single Ni‐W‐P coating, while the as‐plated, single Ni‐W‐P coating showed better wear resistance than the Ni‐P/Ni‐W‐P duplex coatings. Adhesive wear mechanism prevails in the laser‐treated coatings when subjected to wear test against hardened steel material. The effects of microstructural characteristics in the coatings, in particularly the grain size of Ni3P phase and the degree of crystallisation, on the adhesive wear behaviour have been investigated and found to be dominant besides the effect of hardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号