首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sb2S3 thin films are obtained by evaporating of Sb2S3 powder onto glass substrates maintained at room temperature under pressure of 2×10‐5 torr. The composition of the thin films was determined by energy dispersive analysis of X‐ray (EDAX). The effect of thermal annealing in vacuum on the structural properties was studied using X‐ray diffraction (XRD) technique and scanning electron microscopy (SEM). The as‐deposition films were amorphous, while the annealed films have an orthorhombic polycrystalline structure. The optical constants of as‐deposited and annealed Sb2S3 thin films were obtained from the analysis of the experimental recorded transmission spectral data over the wavelength range 400‐1400 nm. The transmittance analysis allowed the determination of refractive index as function of wavelength. It was found that the refractive dispersion data obeyed the single oscillator model, from which the dispersion parameters (oscillator energy, E0, dispersion energy, Ed) were determined. The static refractive index n(0), static dielectric constant, ε, and optical band gap energy, Eg, were also calculated using the values of dispersion parameters. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Thin films of antimony trisulfide (Sb2S3) were prepared by thermal evaporation under vacuum (p=5×10–5 torr) on glass substrates maintained at various temperatures between 293 K and 523 K. Their microstructural properties have obtained by transmission electron microscopy (TEM). The electron diffraction analysis showed the occurrence of amorphous to polycrystalline transition in the films deposited at higher temperature of substrates (523 K). The polycrystalline thin films were found to have an orthorhombic structure. The interplanar distances and unit‐cell parameters were determined by high‐resolution transmission electron microscopy (HRTEM) and compared with the standard values for Sb2S3. The surface morphology of Sb2S3 thin films was investigated by scanning electron microscopy (SEM). The optical transmission spectra at normal incidence of Sb2S3 thin films have been measured in the spectral range of 400–1400 nm. The analysis of the absorption spectra revealed indirect energy gaps, characterizing of amorphous films, while the polycrystalline films exhibited direct energy gap. From the photon energy dependence of absorption coefficient, the optical band gap energy, Eg, were calculated for each thin films. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Thin films of Sb2Te2Se were prepared by conventional thermal evaporation of the presynthesized material on Corning glass substrates. The chemical composition of the samples was determined by means of energy‐dispersive X‐ray spectrometry. X‐ray diffraction studies on the as‐deposited and annealed films revealed an amorphous‐to‐crystalline phase transition. The as‐deposited and annealed films at T a = 323 and 373 K are amorphous, while those annealed at T a= 423 and 473 K are crystalline with a single‐phase of a rhombohedral crystalline structure as that of the source material. The unit‐cell lattice parameters were determined and compared with the reported data. The optical constants (n , k ) of the investigated films were determined from the transmittance and reflectance data at normal incidence in the spectral range 400–2500 nm. The analysis of the absorption spectra revealed non‐direct energy gaps, characterizing the amorphous films, while the crystalline films exhibited direct energy gaps. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Antimony trioxide (Sb2O3) thin films have been deposited onto glass substrates using thermal evaporation technique at room temperature. The structural feature and surface morphology were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Sandwich‐type structures were deposited with films thickness d = 0.55 μm using evaporated electrodes of silver. Current‐voltage (J‐U) characteristics have been measured at various fixed temperatures in the range 293‐473 K. In all cases, at low electric field (E <104 V/cm), ohmic behavior is observed. However, at high electric field (E >104 V/cm), non‐ohmic behavior is observed. An analysis of the experimental data indicates that in the range of high‐applied electric field, the dominant conduction mechanism is space charge limited currents (SCLC). Using the relevant SCLC theory, the carrier concentration, total trap concentration and the ratio of free charge to trapped charge have been calculated and correlated with changes in the structures of antimony trioxide thin films. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Optical properties of spray deposited antimony (Sb) doped tin oxide (SnO2) thin films, prepared from SnCl2 precursor, have been studied as a function of antimony doping concentration. The doping concentration was varied from 0‐4 wt.% of Sb. All the films were deposited on microscope glass slides at the optimized substrate temperature of 400 °C. The films are polycrystalline in nature with tetragonal crystal structure. The doped films are degenerate and n‐type conducting. The sheet resistance of tin oxide films was found to decrease from 38.22 Ω/□ for undoped films to 2.17 Ω/□ for antimony doped films. The lowest sheet resistance was achieved for 2 wt.% of Sb doping. To the best of our knowledge, this sheet resistance value is the lowest reported so far, for Sb doped films prepared from SnCl2 precursor. The transmittance and reflectance spectra for the as‐deposited films were recorded in the wavelength range of 300 to 2500 nm. The transmittance of the films was observed to increase from 42 % to 55 % (at 800 nm) on initial addition of Sb and then it is decreased for higher level of antimony doping. This paper investigates the variation of optical and electrical properties of the as‐deposited films with Sb doping. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
CdS thin films of varying thicknesses were deposited on cleaned glass substrates at room temperature by thermal evaporation technique in a vacuum of about 2 x 10‐5 torr. UV‐VIS spectra of the films were studied using the optical transmittance measurements which were taken in the spectral region from 300 nm to 1100 nm. The absorbance and reflectance spectra of the films in the UV‐VIS region were also studied. Optical constants such as optical band gap, extinction coefficient, refractive index, optical conductivity and complex dielectric constant were evaluated from these spectra. All the films were found to exhibit high transmittance (∼ 60 ‐ 93 %), low absorbance and low reflectance in the visible/near infrared region from ∼ 500 nm to 1100 nm. The optical band gap energy was found to be in the range 2.28 – 2.53 eV. All the films annealed at 300°C for 4 hours in vacuum (∼ 10‐2 torr) showed a decrease in the optical transmittance with its absorption edge shifted towards the longer wavelength, leading to the result that the optical band gap decreases on annealing the films. Also, on annealing crystallinity of the films improves, resulting in decrease in the optical transmittance. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This study deals with the role of the different substrates on the microstructural, optical and electronical properties of TiO2 thin films produced by conventional direct current (DC) magnetron sputtering in a mixture of pure argon and oxygen using a Ti metal target with the aid of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis) and atomic force microscopy (AFM) measurements. Transparent TiO2 thin films are deposited on Soda lime glass, MgO(100), quartz and sitall substrates. Phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. It is found that the amplitude of interference oscillation of the films is in a range of 77‐89%. The transmittance of the film deposited on Soda lime glass is the smallest while the film produced on MgO(100) substrate obtains the maximum transmittance value. The refractive index and optical band gap of the TiO2 thin films are also inferred from the transmittance spectra. The results show that the film deposited on Soda lime glass has the better optical property while the film produced on MgO(100) substrate exhibits much better photoactivity than the other films because of the large optical energy band gap. As for the XRD results, the film prepared on MgO(100) substrate contains the anatase phase only; on the other hand, the other films contain both anatase and rutile phases. Furthermore, AFM images show that the regular structures are observed on the surface of all the films studied. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Thin films of InSe were obtained by thermal evaporation techniques on glass substrates maintained at various temperatures (Tsb = 30°, 400°C). X‐ray diffraction analysis showed the occurrence of amorphous to polycrystalline transformation in the films deposited at higher substrate temperature (400°C). The polycrystalline films were found to have a hexagonal lattice. Compositions of these films have been characterized by EDAX and the surface analysis by scanning electron microscopy. Optical properties of the films, investigated by using spectrophotometer transmittance spectra in the wavelength range (300 – 1100 nm), were explained in terms of substrate temperatures. Films formed at room temperature showed an optical band gap (Egopt) 1.56 eV; where as the films formed at 400°C were found to have a Egopt of 1.92 eV. The increase in the value of Egopt with Tsb treatment is interpreted in terms of the density of states model as proposed by Mott and Davis. The analysis of current ‐Voltage characteristics, based on space charge limited currents (SCLC) measurements, confirms the exponential decrease of density of states from the conduction band edge towards the Fermi level for both the amorphous and polycrystalline films. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
GeO2 thin films were prepared by sol‐gel method on ITO/Glass substrate. The electrical and optical properties and the microstructures of these films were investigated with special emphasis on the effects of an annealing treatment in ambient air. The films were annealed at various temperatures from 500 °C to 700 °C. Structural analysis through X‐ray diffraction (XRD) and atomic force microscope (AFM) showed that surface structure and morphological characteristics were sensitive to the treatment conditions. The optical transmittance spectra of the GeO2/ITO/Glass were measured using a UV‐visible spectrophotometer. All films exhibited GeO2 (101) orientation perpendicular to the substrate surface where the grain size increased with increasing annealing temperature. The optical transmittance spectroscopy further revealed high transparency (over 70 %) in the wave range 400 – 800 nm of the visible region. At an annealing temperature level of 700 °C, the GeO2 films were found to possess a leakage current density of 1.31×10‐6A/cm2 at an electrical field of 20 kV/cm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Al‐doped ZnO nanoparticle thin films were prepared on glass substrate at the optimum temperature of (410±10) °C by spray pyrolysis technique using zinc nitrate as a precursor solution and aluminium chloride as a dopant. The dopant concentration (Al/Zn at%) was varied from 0 to 2 at%. Structural analysis of the films shows that all the films are of polycrystalline zinc oxide in nature, possessing hexagonal wurtzite structure. The films exhibit variation in peak intensities corresponding to (100), (002) and (101) reflection planes on Al‐doping. The crystallite size calculated by Scherrer formula has been found to be in the range of 35‐65 nm. The optical absorption study shows that the optical band gap in the Al‐doped films varies in the range of 3.11 – 3.22 eV. The width of localized states in the band gap estimated by the Urbach tail analysis has been found to be minimum in case of the 1 at% Al‐doped zinc oxide thin film. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Nanostructured titanium dioxide thin films were prepared using reactive pulsed laser ablation technique. Effects of annealing on the structural, morphological, electrical and optical properties are discussed. The structural, electrical and optical properties of TiO2 films are found to be sensitive to annealing temperature and are described with GIXRD, SEM, AFM, UV‐Visible spectroscopy and electrical studies. X‐ray diffraction studies showed that the as‐deposited films were amorphous and at first changed to anatase and then to rutile phase with increase of annealing temperature. Optical constants of these films were derived from the transmission spectra and the refractive index dispersion of the films, subjected to annealing at different temperatures, is discussed in terms of the single oscillator‐Wemple and Didomenico model. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
ZnO thin films were prepared by spray pyrolytic decomposition of zinc acetate onto a glass substrate. These films were analyzed for the optical and electrical properties. Optical studies show that in these films the electronic transition is of the direct transition type. The optical energy gap for the films of different thicknesses is estimated to be in the range 2.98 – 3.09 eV. Electrical studies indicate that the films exhibit thermally activated electronic conduction and the activation energies are found to be dependent on the film thickness. The complex impedance measurements were carried out over a wide range of frequencies at room temperature (300 K). All the impedance spectra contain only a single arc, but the arc has a non‐zero intersection with the real axis in the high frequency region. Also, the arc has its centre lying below with the real axis which indicates the multirelaxation behavior of the films. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
Abstract

Thin films copper oxides are perspective materials for many optoelectronic applications, including photovoltaics. The samples were deposited on glass and silicon substrates by magnetron sputtering method using Modular Platform PREVAC. After deposition the samples were thermally treated by annealing in oxygen atmosphere for 60?min at 450?°C. Morphology confirms that all the films have crystalline structure. Optical measurements show that the films have wide band gap within the range 2.20÷2.48?eV before and 2.03÷2.40?eV after annealing. The article presents the discussion about the influence of annealing on Cu2O thin film parameters.  相似文献   

15.
Nanocrystalline and transparent conducting SnO2‐ ZnO films were fabricated by employing an inexpensive, simplified spray technique using a perfume atomizer at relatively low substrate temperature (360±5 °C) compared with conventional spray method. The structural studies reveal that the SnO2‐ZnO films are polycrystalline in nature with preferential orientation along the (101) plane. The dislocation density is very low (1.48×1015lines/m2), indicating the good crystallinity of the films. The crystallite size of the films was found to be in the range of 26–34 nm. The optical transmittance in the visible range and the optical band gap are 85% and 3.6 eV respectively. The sheet resistance increases from 8.74 kΩ/□ to 32.4 kΩ/□ as the zinc concentration increases from 0 to 40 at.%. The films were found to have desirable figure of merit (1.63×10–2 (Ω/□)–1), low temperature coefficient of resistance (–1.191/K) and good thermal stability. This simplified spray technique may be considered as a promising alternative to conventional spray for the massive production of economic SnO2 ‐ ZnO films for solar cells, sensors and opto‐electronic applications. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The surface roughness and morphology growth of a-As2S3 films vacuum deposited within a large scale of vapor incidence angles are studied. The formation of a columnar structure at normal and oblique deposition is demonstrated. The relationship between the micromorphology of the films and their optical and mechanical properties is revealed for as grown and annealed samples.  相似文献   

17.
The structural, morphological and optical properties of vacuum‐evaporated CdTe thin films were investigated as a function of substrate temperature and post‐deposition annealing without and with CdCl2/treatment at 400°C for 30 min. Diffraction patterns are almost the same exhibiting higher preferential orientation corresponding to (111) plane of the cubic phase. The intensity of the (111) peak increased with the CdCl2/annealing treatment. The microstructure observed for all films following the CdCl2/annealing treatment are granular, regardless of the as‐deposited microstructure. The grain sizes are increased after the CdCl2/annealing treatment but now contain voids around the grain boundaries. The optical band gaps, Eg, were found to be 1.50, 1.50 and 1.48 eV for films deposited at 200 K and annealed without and with CdCl2/treatment at 400°C for 30 min respectively. A progressive sharpening of the absorption edge upon heat treatment particularly for the CdCl2/treated was observed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
CdSe films have been deposited on glass substrates at different substrate temperatures between room temperature and 300 °C. The films exhibited hexagonal structure with preferential orientation in the (002) direction. The crystallinity improved and the grain size increased with temperature. Band gap values are found decreasing from about 1.92 eV to 1.77 eV with increase of the substrate temperature. It is observed that the resistivity decreases continuously with temperature. Laser Raman studies show the presence of 2 LO and 3 LO peaks at 416 cm‐1 and 625 cm‐1respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Thermally processed lead iodide (PbI2) thin films were prepared by the vacuum evaporation method in a constant ambient. Measured thickness of the film was verified analytically from the optical transmittance data in a wavelength range between 300 and 1600 nm. From the Tauc relation for the non‐direct inter band transition, the optical band gap of the film was found to be 2.58 eV for film thickness 300 nm. X‐ray diffraction analysis confirmed that PbI2 films are polycrystalline, having hexagonal structure. The low fluctuation in Urbach energy indicates that the grain size is quite small. The present findings are in agreement with the other results. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Thin films of various thicknesses in the MIM structure have been prepared from the powder of SnO2/Sb2O3 mixed sample by the thermal evaporation technique in a vacuum of 10−5 Torr. Dielectric properties of SnO2/Sb2O3 mixed thin films have been studied with temperature starting from LNT to RT and above RT and frequency ranging from 100 Hz to 16 kHz. The activation energy for the migration of charge carriers in SnO2/Sb2O3 mixed thin films has been calculated and it is found to be 0.23 eV. The results thus obtained on dielectric properties of SnO2/Sb2O3 mixed thin films are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号