首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We propose a new simulation computational method to solve the reduced BCS Hamiltonian based on spin analogy and submatrix diagonalization. Then we further apply this method to solve superconducting energy gap and the results are well consistent with those obtained by Bogoliubov transformation method. The exponential problem of 2N-dimensional matrix is reduced to the polynomial problem of N-dimensional matrix. It is essential to validate this method on a real quantum computer and is helpful to understanding the many-body quantum theory.  相似文献   

2.
In quantum information science, it is very important to solve the eigenvalue problem of the Gram matrix for quantum signals. This allows various quantities to be calculated, such as the error probability, mutual information, channel capacity, and the upper and lower bounds of the reliability function. Solving the eigenvalue problem also provides a matrix representation of quantum signals, which is useful for simulating quantum systems. In the case of symmetric signals, analytic solutions to the eigenvalue problem of the Gram matrix have been obtained, and efficient computations are possible. However, for asymmetric signals, there is no analytic solution and universal numerical algorithms that must be used, rendering the computations inefficient. Recently, we have shown that, for asymmetric signals such as amplitude-shift keying coherent-state signals, the Gram matrix eigenvalue problem can be simplified by exploiting its partial symmetry. In this paper, we clarify a method for simplifying the eigenvalue problem of the Gram matrix for quadrature amplitude modulation (QAM) signals, which are extremely important for applications in quantum communication and quantum ciphers. The results presented in this paper are applicable to ordinary QAM signals as well as modified QAM signals, which enhance the security of quantum cryptography.  相似文献   

3.
We propose a form of parallel computing on classical computers that is based on matrix product states. The virtual parallelization is accomplished by representing bits with matrices and by evolving these matrices from an initial product state that encodes multiple inputs. Matrix evolution follows from the sequential application of gates, as in a logical circuit. The action by classical probabilistic one-bit and deterministic two-bit gates such as NAND are implemented in terms of matrix operations and, as opposed to quantum computing, it is possible to copy bits. We present a way to explore this method of computation to solve search problems and count the number of solutions. We argue that if the classical computational cost of testing solutions (witnesses) requires less than O(n^{2}) local two-bit gates acting on n bits, the search problem can be fully solved in subexponential time. Therefore, for this restricted type of search problem, the virtual parallelization scheme is faster than Grover's quantum algorithm.  相似文献   

4.
Yan-Yan Hou 《中国物理 B》2022,31(3):30304-030304
Partial least squares (PLS) regression is an important linear regression method that efficiently addresses the multiple correlation problem by combining principal component analysis and multiple regression. In this paper, we present a quantum partial least squares (QPLS) regression algorithm. To solve the high time complexity of the PLS regression, we design a quantum eigenvector search method to speed up principal components and regression parameters construction. Meanwhile, we give a density matrix product method to avoid multiple access to quantum random access memory (QRAM) during building residual matrices. The time and space complexities of the QPLS regression are logarithmic in the independent variable dimension n, the dependent variable dimension w, and the number of variables m. This algorithm achieves exponential speed-ups over the PLS regression on n, m, and w. In addition, the QPLS regression inspires us to explore more potential quantum machine learning applications in future works.  相似文献   

5.
《Physics letters. A》2019,383(19):2235-2240
The total least squares (TLS) method is widely used in data-fitting. Compared with the least squares fitting method, the TLS fitting takes into account not only observation errors, but also errors from the measurement matrix of the variables. In this work, the TLS problem is transformed to finding the ground state of a Hamiltonian matrix. We propose quantum algorithms for solving this problem based on quantum simulation of resonant transitions. Our algorithms can achieve at least polynomial speedup over the known classical algorithms.  相似文献   

6.
We consider the dynamics of a quantum coherence of two chosen spins in systems of dipolar coupled nuclear spins s=1/2 in solid. With the purpose to study this coherence we suggest two different methods. One of them uses the partial trace technique and reduced density matrix. The second method is based on the calculation the intensity of multiple quantum coherences using two-spin operator and the density matrix of the whole spin system. Results of calculations of the multiple-quantum dynamics in spin clusters of various dimensionalities are presented. It is shown that the whole density matrix method is more informative than the method based on the reduced density matrix.  相似文献   

7.
The variational quantum algorithm (VQA) is a hybrid classical–quantum algorithm. It can actually run in an intermediate-scale quantum device where the number of available qubits is too limited to perform quantum error correction, so it is one of the most promising quantum algorithms in the noisy intermediate-scale quantum era. In this paper, two ideas for solving the learning with errors problem (LWE) using VQA are proposed. First, after reducing the LWE problem into the bounded distance decoding problem, the quantum approximation optimization algorithm (QAOA) is introduced to improve classical methods. Second, after the LWE problem is reduced into the unique shortest vector problem, the variational quantum eigensolver (VQE) is used to solve it, and the number of qubits required is calculated in detail. Small-scale experiments are carried out for the two LWE variational quantum algorithms, and the experiments show that VQA improves the quality of the classical solutions.  相似文献   

8.
We study a generic problem of dissipative quantum mechanics, a small local quantum system with discrete states coupled in an arbitrary way (i.e. not necessarily linear) to several infinitely large particle or heat reservoirs. For both bosonic or fermionic reservoirs we develop a quantum field-theoretical diagrammatic formulation in Liouville space by expanding systematically in the reservoir-system coupling and integrating out the reservoir degrees of freedom. As a result we obtain a kinetic equation for the reduced density matrix of the quantum system. Based on this formalism, we present a formally exact perturbative renormalization group (RG) method from which the kernel of this kinetic equation can be calculated. It is demonstrated how the nonequilibrium stationary state (induced by several reservoirs kept at different chemical potentials or temperatures), arbitrary observables such as the transport current, and the time evolution into the stationary state can be calculated. Most importantly, we show how RG equations for the relaxation and dephasing rates can be derived and how they cut off generically the RG flow of the vertices. The method is based on a previously derived real-time RG technique [1-4] but formulated here in Laplace space and generalized to arbitrary reservoir-system couplings. Furthermore, for fermionic reservoirs with flat density of states, we make use of a recently introduced cutoff scheme on the imaginary frequency axis [5] which has several technical advantages. Besides the formal set-up of the RG equations for generic problems of dissipative quantum mechanics, we demonstrate the method by applying it to the nonequilibrium isotropic Kondo model. We present a systematic way to solve the RG equations analytically in the weak-coupling limit and provide an outlook of the applicability to the strong-coupling case.  相似文献   

9.
We study the problem of classical particle in linear potential using the formalism of Hilbert space and tomographic-probability distribution. We solve the Liouville equation for this problem by finding the density matrix satisfying a von Newmann-like equation in the form of a product of the wave functions. We discuss the relation of the classical solution obtained to quantum mechanics.  相似文献   

10.
We discuss the problem of heat conduction in quantum spin chain models. To investigate this problem it is necessary to consider the finite open system connected to heat baths. We describe two different procedures to couple the system with the reservoirs: a model of stochastic heat baths and the quantum trajectories solution of the quantum master equation. The stochastic heat bath procedure operates on the pure wave function of the isolated system, so that it is locally and periodically collapsed to a quantum state consistent with a boundary nonequilibrium state. In contrast, the quantum trajectories procedure evaluates ensemble averages in terms of the reduced density matrix operator of the system. We apply these procedures to different models of quantum spin chains and numerically show their applicability to study the heat flow.  相似文献   

11.
The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example of the case in which the subsystems interact with each other; we show that decoherence does not solve the measurement problem precisely because the reduced state of the measuring apparatus is not its quantum state. Second, the non-interacting case is illustrated in the context of no-collapse interpretations, in which we show that certain well-known experimental results cannot be accounted for due to the fact that the reduced states of the measured system and the measuring apparatus are conceived as their quantum states. Finally, we prove that reduced states are a kind of coarse-grained states, and for this reason they cancel the correlations of the subsystem with other subsystems with which it interacts or is entangled.  相似文献   

12.
李龙龙  徐文  曾雉 《物理学报》2009,58(13):266-S271
应用转移矩阵方法求解三种不同量子阱体系中基于单带有效质量模型和包络函数近似下的一维定态薛定谔方程.首先,通过比较Ⅰ型单量子阱GaAlAs/GaAs/GaAlAs体系的解析解和数值解,该方法的精确性得到了验证.其次,与Ⅱ型断代量子阱AlSb/InAs/GaSb/AlSb系统的光致发光谱实验结果比较证实了该方法的适用性.最后,利用该方法推广计算了基于GaAs/GaAlAs材料的Ⅰ型耦合多量子阱体系的子带能级和波函数,说明了方法的通用性和实用性. 关键词: 量子阱 转移矩阵方法 光致发光  相似文献   

13.
The general structure of the bound state problem posed by a Poincaré-invariant quantum field theory is discussed. It is pointed out that the only present-day method which promises to solve this problem is a nonperturbative regularisation and a check of scaling in the continuum limit. It is demonstrated that perturbation procedures like the Green's function methods of “quantum hadro-dynamics” are inconsistent with respect to covariance and do not solve the bound state problem. As a consequence we propose to use for an effective many-hadron theory a regularised Hamiltonian including form factors, the arbitrariness of which may be essentially restricted by a “minimal relativity” condition. Examples for such effective theories are discussed.  相似文献   

14.
Ordinary approach to quantum algorithm is based on quantum Turing machine or quantum circuits. It is known that this approach is not powerful enough to solve NP-complete problems. In this paper we study a new approach to quantum algorithm which is a combination of the ordinary quantum algorithm with a chaotic dynamical system. We consider the satisfiability problem as an example of NP-complete problems and argue that the problem, in principle, can be solved in polynomial time by using our new quantum algorithm.  相似文献   

15.
Apparent streak-like artifacts will present in reconstructed images due to excessive quantum noise in low-dose X-ray imaging process. Dealing with the noisy sinogram before a filtered back-projection (FBP) is a useful solution to solve this noise problem. In this paper, we proposed a novel noise restoration method combining wavelet and fuzzy logical technology for low-dose computed tomography (CT) sinogram. The method first utilizes stationary wavelet transform on the noisy sinogram, namely decomposes the sinogram to different resolution levels. And then, at each decomposed resolution level, a fuzzy shrinkage filter is applied to restore the noise-contaminated wavelet coefficients. Simulations were performed and indicated that the proposed method could significantly suppress noise and reduced streak-like artifacts in reconstructed images while at the same time maintaining the image sharpness.  相似文献   

16.
We discuss a parameter estimation problem using quantum decoherence in the double-slit interferometer. We consider a particle coupled to a massive scalar field after the particle passing through the double slit and solve the dynamics non-perturbatively for the coupling by the WKB approximation. This allows us to analyze the estimation problem which cannot be treated by master equation used in the research of quantum probe. In this model, the scalar field reduces the interference fringes of the particle and the fringe pattern depends on the field mass and coupling. To evaluate the contrast and the estimation precision obtained from the pattern, we introduce the interferometric visibility and the Fisher information matrix of the field mass and coupling. For the fringe pattern observed on the distant screen, we derive a simple relation between the visibility and the Fisher matrix. Also, focusing on the estimation precision of the mass, we find that the Fisher information characterizes the wave-particle duality in the double-slit interferometer.  相似文献   

17.
Quantum Game of Two Discriminable Coins   总被引:1,自引:0,他引:1  
In some recent letters, it was reported that quantum strategies are more successful than classical ones for coin-tossing and roulette game. In this paper, we will solve the quantum game of two discriminable coins. And we develop two methods, analogy method and isolation method, to study this problem.  相似文献   

18.
To solve the quantum measurement problem it is necessary to construct quantum mechanical models of measurement interactions to show why properly conducted measurements always yield definite outcomes. The main barrier to a solution has been the interpretive principle that a quantum system has a definite value for an observable only if it may be described by a quantum eigenstate of the corresponding operator. I have recently proposed a solution to the measurement problem based on alternative interpretive principles. The present paper defends this proposal against recent criticisms which seek to show that it fails to solve the problem unless quantum measurements meet highly idealized conditions which no actual measurement could hope to meet. Several models of error-prone measurements are shown to lead to definite outcomes, and a general defense of the appropriateness of these models is sketched.  相似文献   

19.
王冬初  惠萍  谢洪鲸 《发光学报》2009,30(3):293-296
由于量子环特殊的结构,我们尝试过不少方法,发现一般传统方法很难求解薛定谔方程,故很难求出它的波函数和能级。国内外很多学者从事这方面的研究,但发表的文献非常少。有必要寻找一些新的方法从事这方面的研究工作,本文中采用了B样条函数近似拟合波函数的方法,计算了一个在谐振子束缚势和磁场作用下含有杂质的二维量子环中的电子能级。研究了电子能级随磁场强度、束缚势的变化关系以及电子能级与量子环半径的关系。我们发现电子能级随磁场强度、束缚势强度的增强而增强;每一个能级都有一个最小值在特定的量子环半径上,并且随着能级的增加,最小值的位置向半径大的方向偏移。  相似文献   

20.
量子隐形传态的杰出安全特性使其在未来的通讯领域充满潜力.量子力学的不确定性原理和不可克隆定理禁止对量子态进行直接复制,因此,量子隐形传态将量子态划分为经典和量子两部分,信息分别经由经典和量子通道从发送者Alice传递给远方的接收者Bob,根据这两种信息,Bob实行相应操作就可以以一定的几率重建初始传送态.利用一般意义的隐形传态方案,提出一种简便的新方法实现了一个N粒子任意态的概率传态.方法采用N个非最大纠缠的三粒子GHZ态作为量子通道,避免了引入额外的辅助粒子.为了实现传态,Alice将所有粒子分成N份,对第i份的粒子对(i,xi)实行Bell测量并将结果通过经典通道通知Bob,Bob对粒子(yi,zi)进行相应的操作就可以完成第i个粒子信息的传送.当完成N次相似的重复操作后,Bob就可以准确地重建初始传送态.文中以Bell态测量为基本手段,重复的操作同时也降低了实验难度,作为一个特例,文中给出了一个两粒子任意态的传态方案.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号