首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum reservoir stimulation treatments should be designed.  相似文献   

2.
In this work, we carried out experiments on silicate mineral dissolution using a flow-through reactor from 20 to 400°C at 23 MPa. The dissolution of silicate minerals such as actinolite, diopside, and albite in water may require the breaking of more than one metal?Coxygen bond type. Different metal elements in silicate minerals have different release rates and the dissolution product is often non-stoichiometric. Na, Mg, Fe, and Ca dissolve faster than Si at T < 300°C. At T ?? 300°C, the release rate of Si is higher than that of the other metals. The molar concentration ratios of the dissolving metal Mi versus Si such as Mg/Si, Ca/Si and Al/Si, which are the release ratios in the effluent solutions, are often different from the molar ratios of these elements in the minerals. The results show that the incongruent dissolution of minerals is related to surface chemical modifications. Non-stoichiometric dissolution is caused by the formation of a non-stoichiometric leaching layer at the surface or by the presence of a secondary mineral at the surface. Our experiments indicate that the dissolution of most silicate minerals is close to stoichiometric at 200 and 300°C, e.g., for actinolite and albite at 300°C. The surfaces after reaction with aqueous solutions were investigated using SEM and TEM. At T < 300°C, the mineral surfaces (e.g., for actinolite) after the reaction with water are slightly Si-rich and slightly Fe (and/or Mg, Ca) deficient. In contrast, at T ?? 300°C, the surfaces after reaction with water are slightly Fe-rich and somewhat Si deficient.  相似文献   

3.
In this study, the synthesis of template free zeolite Y and its recrystallization to two types of pure zeolite P and analcime in the presence of the amino acid d‐methionine as structure‐directing agent were investigated. The recrystallization occurred solely when specific heating cycles were applyed. A completely crystallized phase of zeolite Y for the mixture of zeolite P and analcime was observed in the presence of d‐methionine at a concentration of 0.015 <SC>m</SC>. The effect of different Si/Al ratios (2.3–9.3), crystallization temperatures (40–160 °C), and crystallization times (28–96 hours) on the achievement of two different zeolite types were studied as well. Pure zeolite P was obtained during conventional heating to 100 °C for 42 hours, whereas pure analcime zeolite was achieved by heating the mixture to 160 °C for 96 hours. The products were characterized by X‐ray diffraction, scanning electron microscopy, and IR spectroscopy.  相似文献   

4.
Bismuth‐modified zeolite‐P (Bi‐ZP) was synthesized by hydrothermal methods during the phase transformation of analcime to zeolite‐P. The evolution of phase transformation of pure analcime to Bi‐ZP was investigated. The results showed that bismuth atoms were incorporated into the framework of the microporous zeolite‐P. The effect of various Bi/Al (0–3) and Si/Bi (1–5) mole ratios on the synthesis of bismuth modified zeolite were studied by X‐ray diffraction (XRD) technique and FT‐IR spectroscopy. Evolution of the growth process of Bi‐ZP spheres was carried out at different time intervals with XRD patterns and FE‐SEM images. The energy dispersive X‐ray (EDX) spectrum indicated the existence of bismuth atoms in the synthesized Bi‐ZP. Framework substitutions of bismuth were evidenced by a set of complementary characterizations such as diffusive reflectance UV/Vis (DRS) and Raman spectroscopy on the synthesized Bi‐ZP (Si/Bi = 1).  相似文献   

5.
Olefin alkylation of thiophenic sulfur process was carried out in model gasoline, using Hβ zeolites with different Si/Al2 ratios as catalysts. In particular, the influence of acid properties of Hβ zeolites on its catalytic ability for the thiophene alkylation, xylene alkylation and hexene oligomerization was investigated. The results showed that the acidity of the Hβ zeolite was increased with the decrease of Si/Al2 ratio, but its catalytic ability was not always increased. In fact, it reached the maximal catalytic ability at Si/Al2 ratio of 66, and under the reaction conditions of 60 ℃, 1.5 MPa, WHSV 3.0 h-1and time on stream 2 h. At the ratio, the conversion of thiophene, xylene, and oligomerized hexene were 96.6%, 2.7% and 2.8%, respectively. An optimal Si/Al2 ratio exists for the catalytic performance of H/3 zeolite. By investigating the coke deposition of the used H/3 zeolite catalysts, it has been found that the optimal Si/Al2 ratio is attributed to the combined effect of the carbocation activation capability and the hydrogen transformation capability of the H/3 zeolite catalyst.  相似文献   

6.
经水热处理和SiCl4处理得到了两个系列的脱铝Y沸石USY(W)和USY(T)。经X射线衍射分析、化学分析和ESCA研究确定USY(W)中包含有非晶格铝,通过TPD、IR研究发现,沸石中非晶格铝屏蔽了沸石中的强酸中心,同时产生部分弱酸中心,经异丙苯裂化反应和DTA实验发现非晶格铝的存在虽使反应活性降低,但却提高了抗积碳能力。  相似文献   

7.
In the present study, the solid-state ion exchange method (SSIE) was applied to introduce iron and copper into highly silicate zeolites: beta (BEA, Si/Al = 12.5), ferrierite (FER, Si/Al = 10) and mordenite (MOR, Si/Al = 10). The activity of the prepared samples in the selective catalytic reduction of NO with ammonia (NH3-SCR) was measured. The highest performance was recorded for Cu-Fe-BEA followed by Cu-Fe-MOR while Cu-Fe-FER showed a low catalytic activity over the entire reaction temperature range. It is shown in this study that the zeolite framework is one of the parameters controlling the amount, environment and distribution of metal species formed during the ion exchange process in Cu-Fe-zeolite catalysts.  相似文献   

8.
HZSM-5型分子筛硅铝比对一步法合成二甲醚的影响   总被引:11,自引:2,他引:11  
以Cu/Zn/Al(摩尔比为6∶3∶1)甲醇合成催化剂与HZSM-5型分子筛混合,制备了一步法二甲醚合成催化剂。通过改用三种不同Si/Al摩尔比(摩尔比为25、38和50)的HZSM-5型分子筛,考察了催化剂中脱水组分(HZSM-5分子筛)的酸性对二甲醚合成的影响。结果表明,随着催化剂Si/Al摩尔比的降低,分子筛的酸性增强,使得CO单程转化率提高。当催化剂Si/Al=38时,CO对二甲醚的选择性最高,可达到68.13%,其次是催化剂Si/Al=50,选择性最差的是Si/Al=25的催化剂。在553 K、 3 MPa和4 000 h-1的条件下,Si/Al=25和Si/Al=38的催化剂CO单程转化率和DME的选择性接近一致。在此条件下,两者的时空产率达到试验的最大值,分别为0.38 gDME/(gcat·h)和0.36 gDME/(gcat·h),在试验范围内,一步法合成二甲醚催化剂最佳的Si/Al摩尔比为25。  相似文献   

9.
具有菱沸石(CHA)结构的SSZ-13分子筛在甲醇制烯烃(MTO)及柴油机车尾气氨选择性催化还原(NH_3-SCR)反应中具有重要的应用,采用富铝SSZ-13可以调节MTO反应的烯烃选择性和提升NH_3-SCR的低温脱硝活性,因此SSZ-13中的铝含量和分布与对应的酸性决定了其催化性能。本文采用密度泛函理论结合固体核磁共振实验研究了富铝和富硅HSSZ-13的Al位置与Br?nsted酸强度的内在关系。通过计算取代能发现,对于孤立Al位,质子位于Al周围4个不同O位时能量差异较小,最稳定的B酸位点是O(1)―H。对于富铝SSZ-13,两个Al原子位于同一六元环的对位是Al-Si-Si-Al (NNNN)序列中最稳定的结构,而Al-Si-Al (NNN)序列中能量最优的Al分布是两个铝原子排布于六棱柱上下不同的六元环上。通过计算最稳定构型下的质子亲和势、NH3脱附能和吸附氘代乙腈后的1H NMR化学位移,发现富铝SSZ-13中含有Si(2Al)分布的NNN序列导致了其Br?nsted酸强度弱于高硅的分子筛。分峰拟合29Si魔角旋转核磁共振(MASNMR)谱图表明富铝SSZ-13中Si(2Al)的含量在43%以上,而吸附氘代乙腈后的1H MAS NMR实验显示富铝SSZ-13的桥羟基化学位移向低场移动,进一步证明富铝SSZ-13具有较弱的Br?nsted酸强度。  相似文献   

10.
In this work the acid properties of a series of HZSM-12 zeolites with different Si/Al ratio were studied. The ZSM-12 crystals were synthesized by the hydrothermal method starting from a gel with the following molar composition: 20MTEA:10Na2O:x Al2O3:100SiO2:2000H2O, with x = 0.50, 0.67, 1, 1.25 and 2, respectively. The gels were crystallized at 140C for 6 days, then washed, dried and calcined to remove the MTEA template. The samples were ion-exchanged with an ammonium chloride solution and calcined again to obtain the zeolites in the acid form. The materials thus obtained were characterized by XRD, SEM, BET, TG and n-butylamine adsorption. The Si/Al ratio in the reaction mixture affects the amount of zeolite produced and the size of the particles. The XRD analysis indicated that the ZSM-12 zeolite crystallizes in a pure form only with Si/Al ratio above 33. The SEM analysis showed the presence of crystallites with very well defined prismatic shapes. The removal of the MTEA of the pores of the ZSM-12 by TG indicated that there are two kinds of internal sites occupied by MTEA inside the structure. The BET area of the ZSM-12 decreases proportionally with the crystallinity of materials. The desorption of n-butylamine showed that the acid site density is proportional to aluminum content, but the Si/Al ratio shows little influence on the relative strengths of these sites.  相似文献   

11.
The structural modifications and the Bronsted acid sites generated during the acid treatment of montmorillonite clay with varied concentration of sulphuric acid was determined using FT-IR spectroscopy. Octahedral sheet is affected at low acid concentration resulting into the dissolution of cations; among them Mg2+ cations are prone to dissolve than Fe2+/3+ and Al3+. Tetrahedral sheet is affected at higher acid concentration. The partial substitution of octahedral Al3+ by Mg2+ or Fe2+/3+ cations and the presence of other non-smectite minerals such as kaolinites was also been clearly identified, thus making FT-IR spectroscopy as a rapid technique for monitoring the structural features of montmorillonite clay.  相似文献   

12.
The hydrothermal synthesis of analcime (ANA) with N,N′‐dibenzyl‐N,N,N′,N′‐tetramethylethylenediamine (DBTMED) as template was systematically studied. The various parameters that affect the crystallization of analcime, such as temperature, time, Al source, and Si/Al ratio were investigated. Systematic variations of these parameters revealed that ANA was obtained from the reaction mixture with the optimized ratios of SiO2/Al2O3 = 5–9.5 in presence of DBTMED, whereas template‐free clear solution methods require SiO2/Al2O3 ratio of greater than 25. When experiments were conducted at 130 and 150 °C for 4 days, a mixture of analcime and zeolite P was present in the samples, and a pure analcime sample could be obtained with heating in the temperature range 160–180 °C. When microwave and conventional heating were used, analcime could be obtained after 2 days. The obtained products were characterized by XRD, SEM, and IR spectroscopy.  相似文献   

13.
Through the synthesis of 2D MFI zeolite samples of Si/Al ratio ranged from 13 to 74 with inter-crystalline mesoporosity and their reference 3D counterparts, we have systematically studied and revealed the impact of Si/Al ratio on the inter-dependence of core intrinsic properties of structural porosity and acidity. It is apparent that mesopores in the 2D MFI zeolite play a critical role, dictating the accessibility and distribution of specific acid sites. It was found that, compared to their 3D counterparts, the 2D samples possess a three-times larger accessible surface area owing to the mesopores. Although having a slightly lower total number of acid sites, the 2D samples enjoy a higher percentage of accessible strong acid sites and weak Lewis acid sites. Consequently, in three selected liquid phase reactions, which had different acidity demands and molecular diffusion constraints, the 2D samples demonstrated much higher catalytic activities and resistance to deactivation. This study has, for the first time, established the relationship between Si/Al ratio and acidity for the 2D MFI zeolite, thus enabling rational selection of a Si/Al ratio for a targeted application.  相似文献   

14.
MMM分子筛的制备与表征   总被引:5,自引:3,他引:5  
 以碱溶液处理ZSM-5分子筛,得到了含微孔及介孔的MFI结构分子筛(简称MMM),并采用XRD,XRF,SEM,XPS和低温氮吸附等技术对分子筛进行了表征.结果表明,通过改变处理碱的浓度可以得到具有不同物化性能的MMM分子筛,其化学组成、介孔及微孔的大小和多少,及分子筛晶体上n(Al)/n(Si)均随碱浓度的变化而变化,随着碱浓度的增加,分子筛部分微孔结构遭到破坏,介孔的数量增加,孔径增大,n(Al)/n(Si)增大.碱处理脱硅的过程包括脱除晶粒间的无定形物质,脱除分子筛表面的硅及脱除分子筛体相硅等步骤,硅脱除以后形成了介孔.  相似文献   

15.
Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Bronsted acid sites in the formation of higher hydrocarbons. The oligomerization of olefins, dependent on the acidity of ZSM-5 zeolite, is an important step in the conversion of natural gas to liquid fuels. The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst. ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios. The FT-IR analysis revealed that the integrated framework aluminum band, non-framework aluminum band, and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated. The performance of the dealuminated zeolite was tested for ethylene oligomerization. The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion, but the gasoline selectivity was reduced compared to the performance  相似文献   

16.
Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.  相似文献   

17.
The role of the concentration and the nature of aluminium in the creation of hierarchical porosity in both commercial and synthesized MFI zeolites have been investigated through controlled mesoporosity development by desilication in alkaline medium. Framework aluminium controls the process of framework silicon extraction and makes desilication selective towards intracrystalline mesopore formation. An optimal molar Si/Al ratio in the range 25-50 has been identified; this leads to an optimal mesoporosity centred around 10 nm and mesopore surface areas of up to 235 m(2) g(-1) while preserving the intrinsic crystalline and acidic properties. At lower framework Si/Al ratios the relatively high Al content inhibits Si extraction and hardly any mesopores are created, while in highly siliceous ZSM-5 unselective extraction of framework Si induces formation of large pores. The existence of framework Al sites in different T positions that are more or less susceptible to the alkaline treatment, and the occurrence of re-alumination, are tentative explanations for the remarkable behaviour of Al in the desilication process. The presence of substantial extra framework Al, obtained by steam treatment, inhibits Si extraction and related mesopore formation; this is attributed to re-alumination of the extraframework Al species during the alkaline treatment. Removal of extraframework Al species by mild oxalic acid treatment restores susceptibility to desilication, which is accompanied by formation of larger mesopores due to the enhanced Si/Al ratio in the acid-treated zeolite.  相似文献   

18.
Copper adsorption and Si, Al, Ca, Mg, and Na release from clinoptilolite   总被引:1,自引:0,他引:1  
Copper adsorption onto clinoptilolite (natural zeolite), Al/Si dissolution, and Mg, Ca, and Na release from the substrate were the subjects of the investigation described here. Experimental variables were Cu and electrolyte concentrations and solution pH. Copper adsorption was found to increase with increased pH and with decreased electrolyte concentration. Large amounts of K were also adsorbed from electrolyte. Since solution pH was assumed as a variable, the effects of [H(+)] differentiation on Cu adsorption and on Al/Si dissolution were also examined. Al dissolution was affected mainly by electrolyte concentration, whereas Si dissolution was affected mainly by adsorbed Cu amount. It was assumed that the release of Mg, Ca, and Na occurs through ion-exchange reactions with solution K(+), because their release is affected more by electrolyte concentration than by adsorbed Cu. From the study of FTIR spectra for various samples used in the present investigation, we observed that the removal of framework Si/Al shifts the band which was attributed to O-T-O stretching vibration toward higher frequency. Significant changes were observed for the bands assigned to Si-OH-Al bridges and to monomeric and polymeric hydrogen bonds at the region between 3650 and 3200 cm(-1). It is proposed that the Cu species caused the destruction of H-bonded structures, whereas K adsorbed species were located at exchangeable sites after an ion-exchange process between K and Ca, Mg, and Na from the zeolite's surface. An expansion of the zeolite framework was detected from XRD patterns under acid conditions.  相似文献   

19.
提出了将原位合成的F -ZSM - 5沸石分子筛用于偏三甲苯 -甲醇烷基化的催化反应的新方法。实验表明 ,F离子的原位引入 ,提高了ZSM - 5沸石催化剂的催化活性 ,使偏三甲苯转化率达 5 6%以上 ,均四甲苯在四甲苯中的含量达 98%以上。  相似文献   

20.
LiNaY沸石经SiCl_4气相脱铝补硅而制得一系列高硅铝比Y沸石,用XRD,IR测定脱铝沸石的晶胞参数α_0,骨架硅铝比Si_F/Al_F,和其结构稳定性.用TG—DTA法研究其表面憎水性能.用真空重量法研究其吸附性能。结果表明随着骨架脱铝量的增加其结构稳定性和憎水性都随之增加.对极性分了的吸附能力随之下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号