首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides formed as reaction products, of specific hydrolysis of proteins by trypsin, are characterized by a basic residue (Arg or Lys) at the C-terminus, which facilitates formation of abundant [M + 2H]2+ ions under electrospray or ionspray conditions. These doubly charged ions readily dissociate upon collisional activation to y" and b fragment ions which are mass complements of one another. The suggestion that these fragments are formed by direct charge-separation dissociations must contend with the observation that the y" intensities are generally appreciably larger than those of their b counterparts. However, it is shown that this can be accounted for by a greater susceptibility of the b ions to undergo further dissociation to smaller fragments such as immonium ions. In addition no evidence could be found to support alternative mechanisms, including dissociative electron capture, for which equal intensities of the two fragment ion series are not obligatory. Initial protonation at the N-terminus was shown to be required for formation of these [M + 2H]2+ ions via its suppression by mono-acetylation at the N-terminus. These findings, and others concerning formation of [y"']2+ fragments, are consistent with extensions of published mechanisms for formation of b and of y" fragments from singly protonated peptides, via charge-site-induced cleavages and intramolecular proton transfers between nitrogen atoms, respectively.  相似文献   

2.
The unimolecular fragmentation reactions of 28 protonated nitroarenes, occurring on the metastable ion time-scale, are reported. In addition, the collision-induced fragmentation of the same species have been studied at 10 eV and at 50 eV collision energy. When an OH, COOH or NH2 substituent is ortho to the nitro function, the dominant fragmentation involves loss of H2O, for both unimolecular and collision-induced reactions. When there is an electron-releasing substituent ortho or para to the litro group, loss of OH is the dominant fragmentation reaction both on the metastable ion time-scale and for ions activated by collision. When the electron-releasing substituent is meta to the nitro group, loss of NO2 is the dominant low-energy unimolecular fragmentation reaction while loss of HNO2 is the most important fragmentation for ions activated by 50 eV collisions. Elimination of NO from [MH]+ occurs to a significant extent in the unimolecular fragmentation of protonated nitrobenzene and those protenated nitrobenzenes containing electron- attracting substituents. In the collision-induced dissociation of these species loss of HNO2 occurs at the expense of loss of NO. The results are consistent with protonation predominantly at the nitro group. The results are discussed in terms of the use of neutral loss scans in tandem mass spectrometry to monitor complex mixtures for nitroarenes.  相似文献   

3.
The collision-induced dissociation (CID) mass spectra of several protonated benzylamines are described and mechanistically rationalized. Under collision-induced decomposition conditions, protonated dibenzylamine, for example, loses ammonia, thereby forming an ion of m/z 181. Deuterium labeling experiments confirmed that the additional proton transferred to the nitrogen atom during this loss of ammonia comes from the ortho positions of the phenyl rings and not from the benzylic methylene groups. A mechanism based on an initial elongation of a C--N bond at the charge center that eventually cleaves the C--N bond to form an ion/neutral complex of benzyl cation and benzylamine is proposed to rationalize the results. The complex then proceeds to dissociate in several different ways: (1) a direct dissociation to yield a benzyl cation observed at m/z 91; (2) an electrophilic attack by the benzyl cation within the complex on the phenyl ring of the benzylamine to remove a pair of electrons from the aromatic sextet to form an arenium ion, which either donates a ring proton (or deuteron when present) to the amino group forming a protonated amine, which undergoes a charge-driven heterolytic cleavage to eliminate ammonia (or benzylamine) forming a benzylbenzyl cation observed at m/z 181, or undergoes a charge-driven heterolytic cleavage to eliminate diphenylmethane and an immonium ion; and (3) a hydride abstraction from a methylene group of the neutral benzylamine to the benzylic cation to eliminate toluene and form a substituted immonium ion. Corresponding benzylamine and dibenzylamine losses observed in the spectra of protonated tribenzylamine and tetrabenzyl ammonium ion, respectively, indicate that the postulated mechanism can be widely applied. The postulated mechanisms enabled proper prediction of mass spectral fragments expected from protonated butenafine, an antifungal drug.  相似文献   

4.
The fragmentation characteristics of peptides derivatized at the side-chain ε-amino group of lysyl residues via reductive amination with benzaldehyde have been examined using collision-induced dissociation (CID) tandem mass spectrometry. The resulting MS/MS spectra exhibit peaks representing product ions formed from two independent fragmentation pathways. One pathway results in backbone fragmentation and commonly observed sequence ion peaks. The other pathway corresponds to the unsymmetrical, heterolytic cleavage of the Cζ-Nε bond that links the benzyl derivative to the side-chain lysyl residue. This results in the elimination of the derivative as a benzylic or tropylium carbocation and a (n − l)+-charged peptide product (where n is the precursor ion charge state). The frequency of occurrence of the elimination pathway increases with increasing charge of the precursor ion. For the benzylmodified tryptic peptides analyzed in this study, peaks representing products from both of these pathways are observed in the MS/MS spectra of doubly-charged precursor ions, but the carbocation elimination pathway occurs almost exclusively for triply-charged precursor ions. The experimental evidence presented herein, combined with molecular orbital calculations, suggests that the elimination pathway is a charge-directed reaction contingent upon protonation of the secondary ε-amino group of the benzyl-derivatized lysyl side chain. If the secondary ε-amine is protonated, the elimination of the carbocation is observed. If the precursor is not protonated at the secondary ε-amine, backbone fragmentation persists. The application of appropriately substituted benzyl analogs may allow for selective control over the relative abundance of product ions generated from the two pathways.  相似文献   

5.
The widespread occurrence of the neutral loss of one to six amino acid residues as neutral fragments from doubly protonated tryptic peptides is documented for 23 peptides with individual sequences. Neutral loss of amino acids from the N-terminus of doubly charged tryptic peptides results in doubly charged y-ions, forming a ladder-like series with the ions [M + 2H](2+) = y(max) (2+), y(max - 1) (2+), y(max - 2) (2+), etc. An internal residue such as histidine, proline, lysine or arginine appears to favor this type of fragmentation, although it was sometimes also observed for peptides without this structure. For doubly protonated non-tryptic peptides with one of these residues at or near the N-terminus, we observed neutral loss from the C-terminus, resulting in a doubly charged b-type ion ladder. The analyses were performed by Q-TOF tandem mass spectrometry, facilitating the recognition of neutral loss ladders by their 2+ charge state and the conversion of the observed mass differences into reliable sequence information. It is shown that the neutral loss of amino acid residues requires low collision offset values, a simple mechanistic explanation based on established fragmentation rules is proposed and the utility of this neutral loss fragmentation pathway as an additional source for dependable peptide sequence information is documented.  相似文献   

6.
Despite significant technological and methodological advancements in peptide sequencing by mass spectrometry, analyzing peptides that exhibit only poor fragmentation upon collision-induced dissociation (CID) remains a challenge. A major cause for unfavorable fragmentation is insufficient proton 'mobility' due to charge localization at strongly basic sites, in particular, the guanidine group of arginine. We have recently demonstrated that the conversion of the guanidine group of the arginine side chain by malondialdehyde (MDA) is a convenient tool to reduce the basicity of arginine residues and can have beneficial effects for peptide fragmentation. In the present work, we have focused on peptides that typically yield incomplete sequence information in CID-MS/MS experiments. Energy-resolved tandem MS experiments were carried out on angiotensins and arginine-containing phosphopeptides to study in detail the influence of the modification step on the fragmentation process. MDA modification dramatically improved the fragmentation behavior of peptides that exhibited only one or two dominant cleavages in their unmodified form. Neutral loss of phosphoric acid from phosphopeptides carrying phosphoserine and threonine residues was significantly reduced in favor of a higher abundance of fragment ions. Complementary experiments were carried out on three different instrumental platforms (triple-quadrupole, 3D ion trap, quadrupole-linear ion trap hybrid) to ascertain that the observation is a general effect.  相似文献   

7.
Some of the most prominent "neutral losses" in peptide ion fragmentation are the loss of ammonia and water from N-terminal glutamine. These processes are studied by electrospray ionization mass spectrometry in singly- and doubly-protonated peptide ions undergoing collision-induced dissociation in a triple quadrupole and in an ion trap instrument. For this study, four sets of peptides were synthesized: (1) QLLLPLLLK and similar peptides with K replaced by R, H, or L, and Q replaced by a number of amino acids, (2) QLnK (n = 0, 1, 3, 5, 7, 9, 11), (3) QLnR (n = 0, 1, 3, 5, 7, 9), and (4) QLn (n = 1, 2, 3, 4, 8). The results for QLLLPLLLK and QLLLPLLLR show that the singly protonated ions undergo loss of ammonia and to a smaller extent loss of water, whereas the doubly protonated ions undergo predominant loss of water. The fast fragmentation next to P (forming the y5 ion) occurs to a larger extent than the neutral losses from the singly protonated ions but much less than the water loss from the doubly protonated ions. The results from these and other peptides show that, in general, when N-terminal glutamine peptides have no "mobile protons", that is, the number of charges on the peptide is no greater than the number of basic amino acids (K, R, H), deamination is the predominant neutral loss fragmentation, but when mobile protons are present the predominant process is the loss of water. Both of these processes are faster than backbone fragmentation at the proline. These results are rationalized on the basis of resonance stabilization of the two types of five-membered ring products that would be formed in the neutral loss processes; the singly protonated ion yields the more stable neutral pyrrolidinone ring whereas the doubly protonated ion yields the protonated aminopyrroline ring (see Schemes). The generality of these trends is confirmed by analyzing an MS/MS spectra library of peptides derived from tryptic digests of yeast. In the absence of mobile protons, glutamine deamination is the most rapid neutral loss process. For peptides with mobile protons, dehydration from glutamine is far more rapid than from any other amino acid. Most strikingly, end terminal glutamine is by far the most labile source of neutral loss in excess-proton peptides, but not highly exceptional when mobile protons are not available. In addition, rates of deamination are faster in lysine versus arginine C-terminus peptides and 20 times faster in positively charged than negatively charged peptides, demonstrating that these formal neutral loss reactions are not "neutral reactions" but depend on charge state and stability.  相似文献   

8.
Motivated by the need for chemical strategies designed to tune peptide fragmentation to selective cleavage reactions, benzyl ring substituent influence on the relative formation of carbocation elimination (CCE) products from peptides with benzylamine‐derivatized lysyl residues has been examined using collision‐induced dissociation (CID) tandem mass spectrometry. Unsubstituted benzylamine‐derivatized peptides yield a mixture of products derived from amide backbone cleavage and CCE. The latter involves side‐chain cleavage of the derivatized lysyl residue to form a benzylic carbocation [C7H7]+ and an intact peptide product ion [(MHn)n+ – (C7H7)+](n‐1)+. The CCE pathway is contingent upon protonation of the secondary ε‐amino group (Nε) of the derivatized lysyl residue. Using the Hammett methodology to evaluate the electronic contributions of benzyl ring substituents on chemical reactivity, a direct correlation was observed between changes in the CCE product ion intensity ratios (relative to backbone fragmentation) and the Hammett substituent constants, σ, of the corresponding substituents. There was no correlation between the substituent‐influenced gas‐phase proton affinity of Nε and the relative ratios of CCE product ions. However, a strong correlation was observed between the π orbital interaction energies (ΔEint) of the eliminated benzylic carbocation and the logarithm of the relative ratios, indicating the predominant factor in the CCE pathway is the substituent effect on the level of hyperconjugation and resonance stability of the eliminated benzylic carbocation. This work effectively demonstrates the applicability of σ (and ΔEint) as substituent selection parameters for the design of benzyl‐based peptide‐reactive reagents which tune CCE product formation as desired for specific applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Gas-phase deprotonation and hydrogen/deuterium (H/D) exchange reactions for ions from three model dodecapeptides were studied by Fourier transform ion cyclotron resonance mass spectrometry. Molecular dynamics calculations were employed to provide information on conformations and Coulomb energies. The peptides, (KGG)4, (K2G4)2, and K4G8, each contain four high basicity lysine residues and eight low basicity glycine residues; however, in the present work only three lysine residues were protonated. Proton transfer reactions with a series of reference amines revealed apparent gas-phase acidities in a narrow range of 207. 3–209. 6 kcal/mol, with deprotonation efficiencies following the order [K4G8+3H]3+ > [(KGG)4+3H]3+ > [(K2G4)2+3H]3+. The three ions also react similarly with d 4-methanol: each exchanged a maximum of 23–25 of their 25 labile hydrogens, with the first 15–17 exchanges occurring at rate constants of (1. 6–2. 6) × 10?11 cm3 molecule?1 s?1. The experimental results agree with molecular modeling findings of similar conformations and Coulomb energies for the three peptide ions. The [M+3H]3+ data are compared to data obtained previously in our laboratory for the “fully” protonated [M+4H]4+ (Zhang, X.; Ewing, N. P.; Cassady, C. J. Int. J. Mass Spectrom. Ion Phys., in press). For (KGG)4 and (K2G4)2, there is a marked difference in H/D exchange reactivity between 3+ ions and 4+ ions. The 4+ ions, which have diffuse conformations, slowly exchange only 14 hydrogens, whereas their more compact 3+ counterparts exchange 23–25 hydrogens at a 5-times greater rate. In contrast, the 3+ and 4+ ions of K4G8 have similar compact conformations and exchange reactivity. The results indicate that a multiply hydrogen-bonded intermediate between the deuterating reagent and the peptide ion is necessary for facile H/D exchange. The slower, incomplete H/D exchange of [(KGG)4+4H]4+ and [(K2G4)2+4H]4+ is attributed to the inability of their protonated lysine n-butylamino groups (which extend away from the peptide backbone) to form this intermediate.  相似文献   

10.
The fragmentation of the multiply charged peptides b-chain of bovine insulin and glucagon have been investigated under low energy collision induced dissociation (CID) conditions using an electrospray ion trap mass spectrometer. The influence of charge state, specific amino acids such as aspartate or proline, the location of basic sites, and the derivatization on the fragmentation behavior has been the focus of interest. As a basis for understanding the fragmentation process, the concept of the mobile proton was applied. A set of different derivatives was used to manipulate the sites of protonation of the peptides in order to control and improve the fragmentation behavior. These results can be applied for de novo sequencing, although the sequence-specific fragmentation processes have significant influence on the dissociation behavior of the peptides.  相似文献   

11.
A variation of the kinetic method for the analysis of fragmentation patterns in mass spectra is proposed. The procedure presents three notable features: no evaluation of the effective temperature of the parent ion is required; the ratio of the activation energies for all competitive channels at play are provided; and the measurement is not biased by the mass discrimination of the instrument. The method is based on the analysis of mass spectra recorded as a function of both the excitation energy and the excitation time. Collision-activated dissociation of protonated Leu-enkephalin achieved in a quadrupolar ion trap and analyzed with this method is presented.  相似文献   

12.
An understanding of the gas-phase dissociation of protonated peptides within the mass spectrometer is essential for automated high-throughput protein identification. In this communication we describe a facile cleavage of the Gln-Gly peptide bond under low-collisional energy conditions. A variety of synthetic peptides have been analysed where key amino acids have been substituted within the sequence PQGPPQQGGR, which is a consensus repeat present in the tryptic peptides of acidic proline-rich protein 1 (PRP-1). The collision-induced dissociation spectra obtained from the PRP-1 tryptic peptides and the synthetic peptides indicate that facile Gln-Gly cleavage occurs when an X-Gln-Gly-Y sequence is present in a peptide, where X is any amino acid and Y any amino acid other than Gly.  相似文献   

13.
14.
The fragmentation mechanism of tetraethyl ortho silicate and tetrapropyl ortho silicate was studied to determine if the consecutive alkene losses observed in their MS/MS daughter ion spectra were produced via a McLafferty rearrangement or by ion-neutral rearrangement mechanisms. The experiments were carried out using atmospheric pressure chemical ionization and low energy collision-induced dissociation. Deuterium labeling of the γ-position provided evidence mat the rearrangement mechanism of the successive alkene losses proceeds predominantly via the ion-neutral complex mechanism. Because the energies imparted to the ions in this experiment are of the same order of magnitude as solution phase reactions, this mechanism may shed light on the formation of silica gels (e.g., aerogels) in that similar structures have been proposed as reaction intermediates in the polymerization of SiO2.  相似文献   

15.
A hybrid tandem instrument of BEqQ geometry was used to determine high-energy decomposition of protonated peptides, such as side-chain fragmentation yielding d n and w n ions. The transmission through both E and Q of such product ions, formed in the second field-free region, permits improved mass resolution and confident mass assignment. The experimental technique may involve synchronous scanning of E and Q, or, for the purpose of identification of specific products, limited-range scanning of either E or Q with the other analyzer fixed. These techniques are not equivalent, with respect to product ion transmission, to the double focusing of product ions achieved with four-sector instruments but nevertheless represent a critical improvement over conventional mass-analyzed ion kinetic energy spectrometry analyses. Fragmentation of protonated peptides occurring in the second field-free region inside and outside the collision cell were distinguished by floating the collision cell above ground potential. Mass filtering using Q confirmed the mass assignments. The data indicate that product ions resulting from spontaneous decomposition are in some instances quantitatively more significant than those resulting from high-energy collisional activation. Furthermore, the differentiation of the products of low- and high-energy processes should facilitate spectral interpretation.  相似文献   

16.
We propose a tandem mass spectrometry method that combines electron-transfer dissociation (ETD) with simultaneous collision-induced dissociation (CID), termed ETD/CID. This technique can provide more complete sequence coverage of peptide ions, especially those at lower charge states. A selected precursor ion is isolated and subjected to ETD. At the same time, a residual precursor ion is subjected to activation via CID. The specific residual precursor ion selected for activation will depend upon the charge state and m/z of the ETD precursor ion. Residual precursor ions, which include unreacted precursor ions and charge-reduced precursor ions (either by electron-transfer or proton transfer), are often abundant remainders in ETD-only reactions. Preliminary results demonstrate that during an ETD/CID experiment, b, y, c, and z-type ions can be produced in a single experiment and displayed in a single mass spectrum. While some peptides, especially doubly protonated ones, do not fragment well by ETD, ETD/CID alleviates this problem by acting in at least one of three ways: (1) the number of ETD fragment ions are enhanced by CID of residual precursor ions, (2) both ETD and CID-derived fragments are produced, or (3) predominantly CID-derived fragments are produced with little or no improvement in ETD-derived fragment ions. Two interesting scenarios are presented that display the flexibility of the ETD/CID method. For example, smaller peptides that show little response to ETD are fragmented preferentially by CID during the ETD/CID experiment. Conversely, larger peptides with higher charge states are fragmented primarily via ETD. Hence, ETD/CID appears to rely upon the fundamental reactivity of the analyte cations to provide the best fragmentation without implementing any additional logic or MS/MS experiments. In addition to the ETD/CID experiments, we describe a novel dual source interface for providing front-end ETD capabilities on a linear ion trap mass spectrometer.  相似文献   

17.
The gas phase fragmentation reactions of protonated cysteine and cysteine-containing peptides have been studied using a combination of collisional activation in a tandem mass spectrometer and ab initio calculations [at the MP2(FC)/6-31G*//HF/6-31G* level of theory]. There are two major competing dissociation pathways for protonated cysteine involving: (i) loss of ammonia, and (ii) loss of the elements of [CH2O2]. MS/MS, MS/MS of selected ions formed by collisional activation in the electrospray ionization source as well as ab initio calculations have been carried out to determine the mechanisms of these reactions. The ab initio results reveal that the most stable [M + H − NH3]+ isomer is an episulfonium ion (A), whereas the most stable [M + H − CH2O2]+ isomer is an immonium ion (B). The effect of the position of the cysteine residue on the fragmentation reactions of the [M + H]+ ions of all the possible simple dipeptide and tripeptide methyl esters containing one cysteine (where all other residues are glycine) has also been investigated. When cysteine is at the N-terminal position, NH3 loss is observed, although the relative abundance of the resultant [M + H − NH3]+ ion decreases with increasing peptide size. In contrast, when cysteine is at any other position, water loss is observed. The proposed mechanism for loss of H2O is in competition with those channels leading to the formation of structurally relevant sequence ions.  相似文献   

18.
Formation of [bn+17+cat]+ is a prominent collision-induced dissociation (CID) pathway for Li+- and Na+-cationized peptides. Dissociation of protonated and Ag+-cationized peptides instead favors formation of the rival bn+/[bn-1+cat]+ species. In this study the influence of a 4-aminomethylbenzoic acid (4AMBz) residue on the relative intensities of [b(3)-1+cat]+ and [b(3)+17+cat]+ fragment ions was investigated using several model tetrapeptides including those with the general formula A(4AMBz)AX and A(4AMBz)GX (where X=G, A, V). For Li+- and Na+-cationized versions of the peptides there was a significant increase in the intensity of [b(3)-1+cat]+ for the peptides that contain the 4AMBz residue, and in some cases the complete elimination of the [b(3)+17+cat]+ pathway. The influence of the 4AMBz residue may be attributed to the fact that [b(3)-1+cat]+ would be a highly conjugated species containing an aromatic ring substituent. Comparison of CID profiles generated from Na+-cationized AAGV and A(4AMBz)GV suggests an apparent decrease in the critical energy for generation of [b(3)-1+Na]+ relative to that of [b(3)+17+Na]+ when the aromatic amino acid occupies a position such that it leads to the formation of the highly conjugated oxazolinone, thus leading to an increase in formation rate for the former compared to the latter.  相似文献   

19.
A combination of electrospray ionisation (ESI), multistage and high‐resolution mass spectrometry experiments was used to compare the gas‐phase chemistry of the amino acids histidine (1), 2‐oxo‐histidine (2), and 2‐thioxo‐histidine (3). Collision‐induced dissociation (CID) of all three different proton‐bound heterodimers of these amino acids led to the relative gas‐phase proton affinity order of: histidine >2‐thioxo‐histidine >2‐oxo‐histidine. Density functional theory (DFT) calculations confirm this order, with the lower proton affinities of the oxidised histidine derivatives arising from their ability to adopt the more stable keto/thioketo tautomeric forms. All protonated amino acids predominately fragment via the combined loss of H2O and CO to yield a1 ions. Protonated 2 and 3 also undergo other small molecule losses including NH3 and the imine HN=CHCO2H. The observed differences in the fragmentation pathways are rationalised through DFT calculations, which reveal that while modification of histidine via the introduction of the oxygen atom in 2 or the sulfur atom in 3 does not affect the barriers against the loss of H2O+CO, barriers against the losses of NH3 and HN=CHCO2H are lowered relative to protonated histidine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of the basic residue on the energetics, dynamics, and mechanisms of backbone fragmentation of protonated peptides was investigated. Time-resolved and collision energy-resolved surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogues, in which arginine is replaced with less basic lysine and histidine residues, was examined using a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). SID experiments demonstrated different kinetics of formation of several primary product ions of peptides with and without arginine residue. The energetics and dynamics of these pathways were determined from Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental data. Comparison between the kinetics and energetics of fragmentation of arginine-containing peptides and the corresponding methyl ester derivatives provides important information on the effect of dissociation pathways involving salt bridge (SB) intermediates on the observed fragmentation behavior. Because pathways involving SB intermediates are characterized by low threshold energies, they efficiently compete with classical oxazolone and imine/enol pathways of arginine-containing peptides on a long time scale of the FTICR instrument. In contrast, fragmentation of histidine- and lysine-containing peptides is largely determined by canonical pathways. Because SB pathways are characterized by negative activation entropies, fragmentation of arginine-containing peptides is kinetically hindered and observed at higher collision energies as compared to their lysine- and histidine-containing analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号