首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trehalose is a disaccharide that attracts much attention as a stress protectant. In this study, we investigated the mechanism of the antioxidant function of trehalose. The spin-lattice relaxation times (T(1)) of (1)H and (13)C NMR spectra were measured to investigate the interaction between trehalose and unsaturated fatty acid (UFA). We selected several kinds of UFA that differ in the number of double bonds and in their configurations (cis or trans). Several other disaccharides (sucrose, maltose, neotrehalose, maltitol, and sorbitol) were also analyzed by NMR. The T(1) values for the (1)H and (13)C signals assigned to the olefin double bonds in UFA decrease with increasing concentration of trehalose and the changes reaches plateaus at integer ratios of trehalose to UFA. The characteristic T(1) change is observed only for the combination of trehalose and UFA with cis double bond(s). On the other hand, from the (13)C-T(1) measurements for trehalose, the T(1) values of the C-3 (C-3') and C-6' (C-6) are found to change remarkably by addition of UFA. (1)H[bond](1)H NOESY measurements provide direct evidence for complexation of trehalose with linoleic acid. These results indicate that one trehalose molecule stoichiometrically interacts with one cis-olefin double bond of UFA. Computer modeling study indicates that trehalose forms a stable complex with an olefin double bond through OH...pi and CH...O types of hydrogen bonding. Furthermore, a significant increase in the activation energy is found for hydrogen abstraction reaction from the methylene group located between the double bonds that are both interacting with the trehalose molecules. Therefore, trehalose has a significant depression effect on the oxidation of UFA through the weak interaction with the double bond(s). This is the first study to elucidate the antioxidant function of trehalose.  相似文献   

2.
Zuo CS  Quan JM  Wu YD 《Organic letters》2007,9(21):4219-4222
Density functional theory calculations indicate that the cage molecule 4 can trap F- in the gas phase (-80.5 kcal/mol) as well as in CH2Cl2 (-14.7 kcal/mol) via strong C-H...F- hydrogen bonds and pi...F- interaction.  相似文献   

3.
The hydrogen-bonded complexes of the nucleobase mimic 2-pyridone (2PY) with seven different fluorinated benzenes (1-, 1,2-, 1,4-, 1,2,3-, 1,3,5-, 1,2,3,4-, and 1,2,4,5-fluorobenzene) are important model systems for investigating the relative importance of hydrogen bonding versus pi-stacking interactions in DNA. We have shown by supersonic-jet spectroscopy that these dimers are hydrogen bonded and not pi-stacked at low temperature (Leist, R.; Frey, J. A.; Leutwyler, S. J. Phys. Chem. A 2006, 110, 4180). Their geometries and binding energies D(e) were calculated using the resolution of identity (RI) M?ller-Plesset second-order perturbation theory method (RIMP2). The most stable dimers are bound by antiparallel N-H...F-C and C-H...O=C hydrogen bonds. The binding energies are extrapolated to the complete basis set (CBS) limit, , using the aug-cc-pVXZ basis set series. The CBS binding energies range from -D(e,CBS) = 6.4-6.9 kcal/mol and the respective dissociation energies from -D(0,CBS) = 5.9-6.3 kcal/mol. In combination with experiment, the latter represent upper limits to the dissociation energies of the pi-stacked isomers (which are not observed experimentally). The individual C-H...O=C and N-H...F-C contributions to D(e) can be approximately separated. They are nearly equal for 2PY.fluorobenzene; each additional F atom strengthens the C-H...O=C hydrogen bond by approximately 0.5 kcal/mol and weakens the C-F...H-N hydrogen bond by approximately 0.3 kcal/mol. The single H-bond strengths and lengths correlate with the gas-phase acid-base properties of the C-H and C-F groups of the fluorobenzenes.  相似文献   

4.
Although the existence of peptide N-H...pi hydrogen bonds recently has been reported in protein structures, little is known about their strength and binding nature and, therefore, the relative importance of the interaction. To shed light on this binding, the N-methylformamide-benzene complex, as a model of the peptide N-H...pi hydrogen bonding, was studied by using density functional theory and M?ller-Plesset second-order perturbation (MP2) methods. The geometry of the complex was fully optimized at the B3LYP/6-31G(d,p) and MP2/6-31G(d,p) levels. The optimized interaction distances are about 3.6 and 3.2 A, respectively, at the two levels. The binding energy corrected by basis set superposition error with the MP2/cc-pVTZ method based on the MP2/6-31G geometry is -4.37 kcal/mol, which is as strong as the conventional hydrogen bonding. The calculated results suggest that the peptide N-H...pi hydrogen bonding is of sufficient strength to play an important role in the stabilization of protein structures. These results are helpful to better understand the characteristics and nature of the peptide N-H...pi interaction as well as to modify current force fields to better represent this special interaction.  相似文献   

5.
Reaction of trimethylsilyl-protected cytosine with methyl iodide afforded N1-methylated product. Subsequent treatment with ethanol resulted in cleavage of the protection group forming [(MeCyt)2H]I (4). Identity of was confirmed by microanalysis, mass spectrometry, 1H and 13C NMR spectroscopy and by single-crystal X-ray diffraction analysis. Crystals of consist of dimeric [(MeCyt)2H]+ cations and I- anions. These ions are arranged in the crystal such that there is a strong base stacking (mean stacking distance 3,467 angstroms) and, furthermore, pi interactions between I- and cytosine rings (mean distance 3,737 angstroms). The dimeric [(MeCyt)2H]+ cations are centrosymmetric having three strong hydrogen bonds, namely two terminal N4-H...O' ones (N4...O' 2.815(4) angstroms) and a central N3-H...N3' (N3...N3' 2.813(4) angstroms) one. Quantum chemical calculations on the DFT level of theory show that the gas phase structure of the dimeric cation exhibits two different terminal N-HO hydrogen bonds, a stronger (N4...O' 2.722 angstroms) and a weaker one (N4'...O 2.960 angstroms). The central N3-HN3[prime or minute] hydrogen bond (N3...N3' 2.852 angstroms) was characterized to have an unsymmetrically located proton and a typical double minimum potential with a very low activation barrier. The interaction energy between [(MeCyt)H]+ and MeCyt yielding [(MeCyt)2H]+ was calculated to be -42.4 kcal mol(-1)(ZPE and BSSE corrected). Comparison with the interaction energy (calculated on the same level of the theory) between cytosine and guanine yielding the triply hydrogen-bonded Watson-Crick dimer (-24.2 kcal mol(-1)) revealed a much higher stability of the hydrogen bonds in [(MeCyt)2H]+.  相似文献   

6.
Tautomerism in aromatic systems with oxygen substitutents is rare. This is investigated in 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene (1) and in 2,7-diacetyl-1,8-dihydroxy-3,6-dimethylnaphthalene (2). The tautomeric nature of 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene is supported by long-range hydrogen-hydrogen coupling between the OH-1 and the OH-8 and by the isotope effects on 13C caused by deuteration at the CH3C==O methyl group. Compound 2 participates in a degenerate equilibrium between two equivalent nonsymmetrical rotamers (2A and 2B), each having two intramolecular O...HO hydrogen bonds: one involving an acetyl oxygen and the neighboring hydroxyl group, and the other between the oxygen centers at positions 1 and 8. In addition, each rotamer is involved in a tautomeric equilibrium, with a structure having an OH-substituted exocyclic double bond (2AT or 2BT).DFT calculations for a large set of compounds highlight the factors controlling the unusual rotational and tautomeric behaviors. A very important factor seems to be the repulsive interaction between the O-1 and O-8 centers, which is modulated by formation of an OH-1...O-8 or OH-8...O1 hydrogen bond. Steric interactions, mesomeric release of electrons from the oxygen at position 8, and a strong OH...O...C hydrogen bond are other factors.Solid-state 13C NMR spectra of 2,7-diacetyl-1,8-dihydroxy-3,6-dimethylnaphthalene at different temperatures demonstrated no averaging in the solid, whereas partially deuterated 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene showed an isotope effect at C-1 of 1.5 ppm, indicating tautomerism in the solid state.  相似文献   

7.
The acyclic 1,5-dienyl hydrogen shift is accelerated by radical-stabilizing phenyl substituents without regard to the type of position occupied in the 1,3(Z)-pentadiene system. 1-Phenyl-5-p-tolyl-1,3(Z)-pentadiene has a corrected energy of activation 5.8 kcal mol(-)(1) lower than that of the parent, while the 2- and 3-phenyl analogues, examined in cyclic systems specifically designed to obviate the otherwise general need for a thermochemical correction to the immediately precursory s-cis conformation, reveal stabilizing effects of 3.6 and 3.4 kcal mol(-)(1), respectively. These relatively small effects are consistent with a chameleonic conceptual scheme for the transition region.  相似文献   

8.
The proton-transfer dynamics in the aromatic Schiff base salicylidene methylamine has been theoretically analyzed in the ground and first singlet (pi,pi) excited electronic states by density functional theory calculations and quantum wave-packet dynamics. The potential energies obtained through electronic calculations that use the time-dependent density functional theory formalism, which predict a barrierless excited-state intramolecular proton transfer, are fitted to a reduced three-dimensional potential energy surface. The time evolution in this surface is solved by means of the multiconfiguration time-dependent Hartree algorithm applied to solve the time-dependent Schr?dinger equation. It is shown that the excited-state proton transfer occurs within 11 fs for hydrogen and 25 fs for deuterium, so that a large kinetic isotope effect is predicted. These results are compared to those of the only previous theoretical work published on this system [Zgierski, M. Z.; Grabowska, A. J. Chem. Phys. 2000, 113, 7845], reporting a configuration interaction singles barrier of 1.6 kcal mol(-1) and time reactions of 30 and 115 fs for the hydrogen and deuterium transfers, respectively, evaluated with the semiclassical instanton approach.  相似文献   

9.
Pan Z  Song Y  Jiao Y  Fang Z  Li Y  Zheng H 《Inorganic chemistry》2008,47(12):5162-5168
Four new coordination complexes, M2(Htmopa)4(H2O)4 (M = Zn2+ (1), Mn2+ (2), (M(Htmopa)2(H2O)2)n (M = Ni2+ (3), Co2+ (4)), have been synthesized by the hydrothermal reaction of Htmopa (Htmopa = 2,3,6,7-tetramethoxyphenanthrene-9-carboxylic acid) with different transition metals at a suitable temperature. Single-crystal determinations revealed that 1 and 2 are isostructural and possess a dinuclear subunit, each connected into 3D networks by hydrogen bonds and C-H...pi interactions. 3 and 4 are also isostructural: the metal ions are bridged through water molecules and carboxylate oxygen atoms to form 1D wavelike double chains, and these double chains are further extended to a 3D network via hydrogen bonds and C-H...pi interactions. The photoluminescent properties of the free Htmopa ligand and its complexes have been studied in the solid state at room temperature. Both Htmopa and 1 exhibit strong blue emissions. Magnetic susceptibility measurements indicate that 2 and 3 exhibit antiferromagnetic coupling, whereas 4 shows a ferromagnetic coupling and exhibits a single-ion behavior of the Co II ion at a higher temperature range.  相似文献   

10.
We have investigated the formation of gas-phase adducts of trimethylaluminum and trimethylgallium with ammonia using room-temperature Fourier transform infrared experiments and density functional theory calculations. Our results indicate for the first time that, at higher partial pressures, a product distinct from the well-known (CH3)3M:NH3 adduct grows in for both M = Al and M = Ga. Comparison of the experimental and calculated IR spectra, along with calculations of the energetics, indicates that this second product is the result of hydrogen bonding of a second NH3 molecule to the (CH3)3M:NH3 adduct and can be written as (CH3)3M:NH3...NH3. The binding energy of this hydrogen-bonded adduct is calculated to be 26.8 kcal/mol for M = Al and 18.4 kcal/mol for M = Ga and is lower in energy (more stable) relative to the 1:1 (CH3)3M:NH3 adduct by 7.2 kcal/mol for M = Al and 6.6 kcal/mol for M = Ga. In contrast, an alternative complex involving the formation of two separate M-N donor-acceptor bonds, which is written as H3N:(CH3)3M:NH3, is calculated to be lower in energy relative to (CH3)3M:NH3 by only 0.1 kcal/mol for M = Al and 0.2 kcal/mol for M = Ga and is not observed experimentally. These results show that hydrogen bonding plays an important role in the interaction of ammonia with metal organic precursors involving Al, Ga, and In, under typical metal organic chemical vapor deposition AlGaInN growth conditions.  相似文献   

11.
The photochemistry of phenyl azide 1 and 13C-labeled phenyl azide 13C-1 incarcerated inside a hemicarcerand 4 was investigated. Low-temperature photolysis of hemicarceplex 41 and 413C-1 yields incarcerated 1-azacyclohepta-1,2,4,6-tetraene 42 and 413C-2 (18-50%), respectively, which were characterized by low-temperature FT-IR and 1H NMR and 13C NMR spectroscopy. After correction for the hemicarcerand-induced upfield shift, the 13C chemical shifts of incarcerated 13C-2 compare very well (Deltadelta 相似文献   

12.
Various criteria based on geometric, energetic, magnetic, and electronic properties are employed to delineate aromatic and antiaromatic systems. The recently proposed block-localized wave function (BLW) method evaluates the original Pauling-Wheland adiabatic resonance energy (ARE), defined as the energy difference between the real conjugated system and the corresponding virtual most stable resonance structure. The BLW-derived ARE of benzene is 57.5 kcal mol(-1) with the 6-311+G** basis set. Kistiakowsky's historical experimental evaluation of the stabilization energy of benzene (36 kcal mol(-1)), based on heats of hydrogenation, seriously underestimates this quantity due to the neglect of the partially counterbalancing hyperconjugative stabilization of cyclohexene, employed as the reference olefin (three times) in Kistiakowsky's evaluation. Based instead on the bond-separation-energy reaction involving ethene, which has no hyperconjugation, as well as methane and ethane, the experimental resonance energy of benzene is found to be 65.0 kcal mol(-1). We derived the "extra cyclic resonance energy" (ECRE) to characterize and measure the extra stabilization (aromaticity) of conjugated rings. ECRE is the difference between the AREs of a fully cyclically conjugated compound and an appropriate model with corresponding, but interrupted (acyclic) conjugation. Based on 1,3,5-hexatriene, which also has three double bonds, the ECRE of benzene is 36.7 kcal mol(-1), whereas based on 1,3,5,7-octatetraene, which has three diene conjugations, the ECRE of benzene is 25.7 kcal mol(-1). Computations on a series of aromatic, nonaromatic, and antiaromatic five-membered rings validate the BLW-computed resonance energies (ARE). ECRE data on the five-membered rings (derived from comparisons with acyclic models) correlate well with nucleus-independent chemical shift (NICS) and other quantitative aromaticity criteria. The ARE of cyclobutadiene is almost the same as butadiene but is 10.5 kcal mol(-1) less than 1,3,5-hexatriene, which also has two diene conjugations. The instability and high reactivity of cyclobutadiene thus mainly result from the sigma-frame strain and the pi-pi Pauli repulsion.  相似文献   

13.
In this study, we use molecular dynamics simulations to investigate and compare the interactions of DPPC bilayers with and without saccharides (glucose or trehalose) under dehydrated conditions. Results from the simulations indicate that unilamellar bilayers lose their structural integrity under dehydrated conditions in the absence of saccharides; however, in the presence of either glucose or trehalose, the bilayers maintain their stability. Hydrogen bond analysis shows that the saccharide molecules displace a significant amount of water surrounding the lipid headgroups. At the same time, the additional hydrogen bonds formed between water and saccharide molecules help to maintain a hydration layer on the lipid bilayer interface. On the basis of the hydrogen bond distributions, trehalose forms more hydrogen bonds with the lipids than glucose, and it is less likely to interact with neighboring saccharide molecules. These results suggest that the interaction between the saccharide and lipid molecules through hydrogen bonds is an essential component of the mechanism for the stabilization of lipid bilayers.  相似文献   

14.
B3LYP calculations with two different basis sets have been performed to understand why bicyclo[2.2.0]hex-1(4)-ene (1a) undergoes dimerization with DeltaH(++) = 11.5 kcal/mol, but dimerization of perfluorobicyclo[2.2.0]hex-1(4)-ene (1b) has never been observed. The former reaction is computed to be exothermic by 37.2 kcal/mol, whereas the latter is calculated to be endothermic by 7.4 kcal/mol. The 44.6 kcal/mol difference between the enthalpies of these two reactions can be dissected into contributions of 24.5 kcal/mol for the difference between the enthalpies for forming diradical intermediates 2a and 2b and 20.1 kcal/mol for cyclization of 2a and 2b to, respectively, 3a and 3b. The latter enthalpy difference is largely attributable to repulsions between the endo-fluorines in the dimer, although the exo-fluorines also are found to contribute. The former enthalpy difference is attributable to the difference between the dissociation enthalpies of the pi bonds in 1a and 1b, which is shown to amount to 16 +/- 1 kcal/mol. About 25% of the stronger pi bond in fluoroalkene 1b is found to be due to hyperconjugation of the eight C-F bonds in 1b with the filled pi orbital. However, the major contributor to the stronger pi bond in 1b is shown to be the unfavorable interaction that results when a pyramidalized radical center is syn to a C-F bond. Both of these effects, which contribute to the greater strength of the pi bond in 1b, relative to that in 1a, are analyzed and discussed.  相似文献   

15.
The hydrogen bonding between water and pyrazine in its ground, lowest (n,pi*), and lowest (pi,pi*) states is investigated using density-functional theory (DFT), time-dependent density function theory (TD-DFT), coupled-cluster singles and doubles (CCSD) theory and equation-of-motion coupled cluster (EOM-CCSD) theory. For all states, the minimum-energy configuration is found to be an orthodox linear hydrogen-bonded species, with the bond strength increasing by 0.4 kcal mol-1 upon formation of the (pi,pi*) state and decreasing by 1.0 kcal mol-1 upon formation of the (n,pi*) state. The calculated solvent shifts for the complexes match experimental data and provide a basis for the understanding of the aqueous solvation of pyrazine, and the excited-state complexes are predicted to be only short-lived, explaining the failure of molecular beam experiments to observe them. Quite a different scenario for hydrogen bonding to the (n,pi*) excited state is found compared to those of H2O:pyridine and H2O:pyrimidine: for pyridine linear hydrogen bonds are unstable and hydrogen bonds to the electron-enriched pi cloud are strong, whereas for pyrimidine the excitation localizes on the nonbonded nitrogen leaving the hydrogen-bonding unaffected. For H2O:pyrazine, the (n,pi*) excitation remains largely delocalized, providing a distinct intermediary scenario.  相似文献   

16.
CASSCF computations show that the hydrogen-transfer-induced fluorescence quenching of the (1)(pi,pi*) excited state of zwitterionic tryptophan occurs in three steps: (1) formation of an intramolecular excited-state complex, (2) hydrogen transfer from the amino acid side chain to the indole chromophore, and (3) radiationless decay through a conical intersection, where the reaction path bifurcates to a photodecarboxylation and a phototautomerization route. We present a general model for fluorescence quenching by hydrogen donors, where the radiationless decay occurs at a conical intersection (real state crossing). At the intersection, the reaction responsible for the quenching is aborted, because the reaction path bifurcates and can proceed forward to the products or backward to the reactants. The position of the intersection along the quenching coordinate depends on the nature of the states and, in turn, affects the formation of photoproducts during the quenching. For a (1)(n,pi*) model system reported earlier (Sinicropi, A.; Pogni, R.; Basosi, R.; Robb, M. A.; Gramlich, G.; Nau, W. M.; Olivucci, M. Angew. Chem., Int. Ed. 2001, 40, 4185-4189), the ground and the excited state of the chromophore are hydrogen acceptors, and the excited-state hydrogen transfer is nonadiabatic and leads directly to the intersection point. There, the hydrogen transfer is aborted, and the reaction can return to the reactant pair or proceed further to the hydrogen-transfer products. In the tryptophan case, the ground state is not a hydrogen acceptor, and the excited-state hydrogen transfer is an adiabatic, sequential proton and electron transfer. The decay to the ground state occurs along a second reaction coordinate associated with decarboxylation of the amino acid side chain and the corresponding aborted conical intersection. The results show that, for (1)(pi,pi*) states, the hydrogen transfer alone is not sufficient to induce the quenching, and explain why fluorescence quenching induced by hydrogen donors is less general for (1)(pi,pi*) than for (1)(n,pi*) states.  相似文献   

17.
Rapamycin (1), a macrolide immunosuppressant, undergoes degradation into ring-opened acid products 2 and 3 under physiologically relevant conditions. The unsaturated product (3) was isolated and studied in this work. Unlike 1, which has its amide primarily in a trans conformation in solution, 3 has both cis and trans conformations in approximately a 1:1 ratio in dimethyl sulfoxide (DMSO). The amount of cis rotamer was increased dramatically in the presence of an organic base such as triethylamine. The detailed NMR results indicate that the cis rotamer is stabilized through an intramolecular ionic hydrogen bond of the carboxylate anion with the tertiary alcohol as part of a nine-membered ring system. This hydrogen bond was characterized further in organic media and the trans-cis rotamer equilibria were used to estimate the relative bond strengths in several solvents. The additional stabilization arising from this ionic hydrogen bond in the cis rotamer was determined to be 1.4 kcal mol(-1) in DMSO-d6, 2.0 kcal mol(-1) in CD3CN and 1.1 kcal mol(-1) in CD3OD.  相似文献   

18.
The interactions of the cryoprotective agent trehalose with a lipid membrane made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine at 323 K were studied by means of molecular dynamics simulations. It was observed that trehalose binds to the phospholipid headgroups with its main axis parallel to the membrane normal. Trehalose establishes hydrogen bonds with the carbonyl and phosphate groups and replaces water molecules from the lipid headgroup. Notably, the number of hydrogen bonds (HBs) that the membrane made with its environment was conserved after trehalose binding. The HBs between lipid and trehalose have a longer lifetime than those established between lipid and water. The binding of the sugar does not produce changes either in the lipid area or in the lipid order parameter. The effect of trehalose on the dipole potential is in agreement with experimental results. The contribution of the different components to the membrane dipole potential was analyzed. It was observed that the binding of trehalose produces changes in the different components and the sugar itself contributes to the surface potential due to the polarization of its hydroxyl in the interface.  相似文献   

19.
(15)N and (13)C NMR experiments were applied to conduct a comparative study of a cold shock protein (Csp) in two states-lyophilized powder and a protein embedded in a glassy trehalose matrix. Both samples were studied at various levels of rehydration. The experiments used (measuring relaxation rates R(1) and R(1ρ), motionally averaged dipolar couplings and solid state exchange method detecting reorientation of the chemical shift anisotropy tensor) allow obtaining abundant information on the protein structural features and internal motions in a range of correlation times from nanoseconds to seconds. The main results are: (a) the trehalose coating makes the protein structure more native in comparison with the dehydrated lyophilized powder, however, trehalose still cannot remove all non-native hydrogen bonds which are present in a dehydrated protein; (b) trehalose has an appreciable effect on the internal dynamics: the motion of the backbone N-H groups in the nanosecond and microsecond time scales becomes slower while the motional amplitude remains constant; (c) upon adding water to the Csp-trehalose mixture, water molecules accumulate around proteins forming a layer between the protein surface and the trehalose matrix. The protein dynamics become faster, however, not as fast as in the fully hydrated state; (d) the hydration response of dynamics of the NH and CH(CH(2)) groups in a protein is qualitatively different: upon increasing protein hydration, the correlation times of the N-H motions become shorter and the amplitude remains stable, and for CH(CH(2)) groups the motional amplitude increases and the correlation times do not change. This can be explained by a different ability of the NH and CH(CH(2)) groups to form hydrogen bonds.  相似文献   

20.
The binding of cytosine to Al, Cu and Ag has been analyzed using the hybrid B3LYP density functional theory method. The three metals all have open shell electronic configuration, with only one unpaired valence electron. Thus it is possible to study the influence of electronic configuration on the stability of these systems. Neutral, cationic and anionic systems were analyzed, in order to assess the influence of atomic charge on bond formation. We argue that in the case of anions, nonconventional hydrogen bonds are formed. It is generally accepted that the hydrogen bond A-H...B is formed by the union of a proton donor group A-H and a proton acceptor B, which contains lone-pair electrons. In this study, we found that in the case of (Cu-cytosine)(-1) and (Ag-cytosine)(-1), N-H...Cu and N-H...Ag bonds are geometrically described as nonconventional hydrogen bonds. Their binding energies fall within the range of -20.0 to -55.4 kcal/mol (depending on the scheme of the reaction) and thus they are classified as examples of strong (>10 kcal/mol) hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号