首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reconsiders the concept of physical reality in quantum theory and the concept of quantum measurement, following Bohr, whose analysis of quantum measurement led him to his concept of a (quantum) “phenomenon,” referring to “the observations obtained under the specified circumstances,” in the interaction between quantum objects and measuring instruments. This situation makes the terms “observation” and “measurement,” as conventionally understood, inapplicable. These terms are remnants of classical physics or still earlier history, from which classical physics inherited it. As defined here, a quantum measurement does not measure any preexisting property of the ultimate constitution of the reality responsible for quantum phenomena. An act of measurement establishes a quantum phenomenon by an interaction between the instrument and the quantum object or in the present view the ultimate constitution of the reality responsible for quantum phenomena and, at the time of measurement, also quantum objects. In the view advanced in this article, in contrast to that of Bohr, quantum objects, such as electrons or photons, are assumed to exist only at the time of measurement and not independently, a view that redefines the concept of quantum object as well. This redefinition becomes especially important in high-energy quantum regimes and quantum field theory and allows this article to define a new concept of quantum field. The article also considers, now following Bohr, the quantum measurement as the entanglement between quantum objects and measurement instruments. The argument of the article is grounded in the concept “reality without realism” (RWR), as underlying quantum measurement thus understood, and the view, the RWR view, of quantum theory defined by this concept. The RWR view places a stratum of physical reality thus designated, here the reality ultimately responsible for quantum phenomena, beyond representation or knowledge, or even conception, and defines the corresponding set of interpretations quantum mechanics or quantum field theory, such as the one assumed in this article, in which, again, not only quantum phenomena but also quantum objects are (idealizations) defined by measurement. As such, the article also offers a broadly conceived response to J. Bell’s argument “against ‘measurement’”.  相似文献   

2.
Jian-Zu Zhang   《Annals of Physics》2009,324(9):1847-1854
Noncommutative Chern–Simons’ system is non-perturbatively investigated at a full deformed level. A deformed “commutative” phase space is found by a non-canonical change between two sets of deformed variables of noncommutative space. It is explored that in the “commutative” phase space all calculations are similar to the case in commutative space. Spectra of its energy and angular momentum of the Chern–Simons’ system are obtained at the full deformed level. The noncommutative–commutative correspondence is clearly showed. Formalism for the general dynamical system is briefly presented. Some subtle points are clarified.  相似文献   

3.
Nanocrystallites of cadmium oxide (CdO) thin films were deposited by sol–gel dip coating technique on glass and Si substrates. XRD and TEM diffraction patterns confirmed the nanocrystalline cubic CdO phase formation. TEM micrograph of the film revealed the manifestation of nano CdO phase with average particle size lying in the range 1.6–9.3 nm. UV–Vis spectrophotometric measurement showed high transparency (nearly 75% in the wavelength range 500–800 nm) of the film with a direct allowed bandgap lying in the range 2.86–3.69 eV. Particle size has also been calculated from the shift of bandgap with that of bulk value for the films for which the particles sizes are comparable to Bohr exitonic radius. The particle size increases with the increase in annealing temperature and also the intensity of XRD peaks increases which implies that better crystallinity takes place at higher temperature.  相似文献   

4.
Nanocrystallites of cadmium oxide (CdO) thin films were deposited by sol–gel dip coating technique on glass and Si substrates. XRD and TEM diffraction patterns confirmed the nanocrystalline cubic CdO phase formation. TEM micrograph of the film revealed the manifestation of nano CdO phase with average particle size lying in the range 1.6–9.3 nm. UV–Vis spectrophotometric measurement showed high transparency (nearly 75% in the wavelength range 500–800 nm) of the film with a direct allowed bandgap lying in the range 2.86–3.69 eV. Particle size has also been calculated from the shift of bandgap with that of bulk value for the films for which the particles sizes are comparable to Bohr exitonic radius. The particle size increases with the increase in annealing temperature and also the intensity of XRD peaks increases which implies that better crystallinity takes place at higher temperature.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

5.
In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger during 1920–1927 are treated. From the formulation of quantum mechanics in 1925–1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory—formulated in fall 1926 by Dirac, London, and Jordan—Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of qnautum mechanics and of physical theory as such—formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930—were continued during the next decades. All these aspects are briefly summarized.  相似文献   

6.
The ideal scalar Aharonov–Bohm (SAB) and Aharonov–Casher (AC) effect involve a magnetic dipole pointing in a certain fixed direction: along a purely time dependent magnetic field in the SAB case and perpendicular to a planar static electric field in the AC case. We extend these effects to arbitrary direction of the magnetic dipole. The precise conditions for having nondispersive precession and interference effects in these generalized set ups are delineated both classically and quantally. Under these conditions the dipole is affected by a nonvanishing torque that causes pure precession around the directions defined by the ideal set ups. It is shown that the precession angles are in the quantal case linearly related to the ideal phase differences, and that the nonideal phase differences are nonlinearly related to the ideal phase differences. It is argued that the latter nonlinearity is due to the appearance of a geometric phase associated with the nontrivial spin path. It is further demonstrated that the spatial force vanishes in all cases except in the classical treatment of the nonideal AC set up, where the occurring force has to be compensated by the experimental arrangement. Finally, for a closed space-time loop the local precession effects can be inferred from the interference pattern characterized by the nonideal phase differences and the visibilities. It is argued that this makes it natural to regard SAB and AC as essentially local and nontopological effects.  相似文献   

7.
Symmetries and dynamics of wave nodes in space and time expose principles of quantum theory and its relativistic underpinning. Among these are key principles behind recently discovered dephasing and rephasing phenomena known as revivals. A reexamination of basic Eberly revivals, Berry “quantum fractal” landscapes, and the “quantum carpets” of Schleich and co-workers reveals a simple Farey arithmetic and Cn-group revival structure in one of the earliest quantum wave models, the Bohr rotor. These principles may be useful for interpreting modern time-dependent rovibrational spectra. The nodal dynamics of the Bohr rotor is seen to have a quasi-fractal structure similar to that of earlier systems involving chaotic circle maps. The fractal structure is an overlay of discrete versions of Bohr's rotor model. Each N-point Bohr rotor acts like a base-N quantum “odometer” which performs rational fraction arithmetic. Such systems may have applications for optical information technology and quantum computing.  相似文献   

8.
We first introduce theWigner–Weyl–Moyal formalism for a theorywhose phase space is an arbitrary Lie algebra. We alsogeneralize to quantum Lie algebras and to supersymmetrictheories. It turns out that the noncommutativity leads to a deformation ofthe classical phase space: instead of being a vectorspace, it becomes a manifold, the topology of which isgiven by the commutator relations. It is shown in fact that the classical phase space, for asemisimple Lie algebra, becomes a homogeneous symplecticmanifold. The symplectic product is also deformed. Wefinally make some comments on how to generalise to C*-algebras and other operator algebras,too.  相似文献   

9.
Philip J.B. Koeck   《Optik》2004,115(10):459-472
I investigated which portions of the Fourier transform of binary signals, images and three-dimensional objects are necessary to correctly identify an object in the presence of noise. This is practically possible for very small binary data sets since the total number of possible objects is then very limited. There are for example 512 different binary images with 9 pixels. It is easy to see that this number soon becomes impractically large for bigger images or if one allows more than two possible pixel values. It turns out that even in the presence of large amounts of noise a relatively small portion of the Fourier transform is essential for deciding which of all possible binary objects the Fourier transform belongs to. These ‘decision experiments’ can be used as a standard for how well algorithms for retrieval of missing Fourier components perform. In another set of computer experiments I investigate the possibility of retrieving various missing Fourier components algorithmically. The main finding of this second set of computer experiments is that the simple retrieval algorithm (a limited form of ‘projection onto convex sets’) used falls very much short of what one might expect from the ‘decision experiments’.I conclude with a discussion what this discrepancy might be due to and some suggestions how to improve the performance of retrieval algorithms for binary objects.  相似文献   

10.
Based on the multidimensional Ermakov theory, a general result that relates the Schrodinger equation and the Milne equation in terms of a space invariant is established. Using this result not only the role of phase in the Wigner function approach to quantum mechanics is demonstrated but also a better explanation for the Aharonov–Bohm effect is sought in terms of a fundamental phase and the matter-field-coupling current. The existence of a similar space invariant is also emphasized for the nonlinear Schrodinger equation.  相似文献   

11.
The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C–790°C, forming of the 2212 superconducting phase at 790°C–860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C–970°C. It is also confirmed that the 2212 superconducting phase (T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.  相似文献   

12.
In this paper we show that the dimensionally reduced Seiberg-Witten equations lead to a Higgs field and we study the resulting moduli spaces. The moduli space arising out of a subset of the equations, shown to be non-empty for a compact Riemann surface of genus g ≥ 1, gives rise to a family of moduli spaces carrying a hyperkähler structure. For the full set of equations the corresponding moduli space does not have the aforementioned hyperkähler structure but has a natural symplectic structure. For the case of the torus, g = 1, we show that the full set of equations has a solution, different from the “vortex solutions”.  相似文献   

13.
It is proved for a Haag–Araki–Kastler quantum field theory, that gravitation reduces the correlations in the vacuum state. Secondly, we prove Bell's inequalities by nuclearity assumptions. The so-called -content of certain compact mappings restricts the size of the set of measurements which violate Bell's inequalities.  相似文献   

14.
It is shown that a class of Stäckel separable systems is characterized in terms of a Gel’fand–Zakharevich bihamiltonian structure. This structure arises as an extension of a Poisson–Nijenhuis structure on phase space. It is also shown that the Casimir of the Gel’fand–Zakharevich bihamiltonian structure provides the family of commuting Killing tensors found by Benenti and that, because of Eisenhart’s theorem, characterize orthogonal separability. It is also shown that recently found properties of quasi-bihamiltonian systems are natural consequences of the geometry of the extension of the Poisson–Nijenhuis structure.  相似文献   

15.
This paper is concerned with development of compact continuously tunable over all the submillimeterwave band (180 – 1500GHz) general purpose radiation source. The source consists of Backward Wave Oscillator (BWO) of the range 180 – 260 GHz or 250 – 375 GHz fixed in a small permanent magnet, followed by specially developed broadband frequency multiplier producing second, third, fourth, fifth and sixth harmonics of BWO fundamental frequency. The conversion losses for all the harmonics are measured. The estimations of output power of the source depending on frequency band are given. The examples of applications are presented in phase lock-in scanning BWO regime.  相似文献   

16.
Principles of message transfer in telecommunication systems are considered when a wide transmission band is required, which can result in tuning away from the transmitting station if the signal-to-noise ratio (SNR) is insufficiently high. Based on a solution of the Fokker-Planck-Kolmogorov equation, it is demonstrated that a signal below noise is broadened 20 times for SNR = 0.05. This makes signal accumulation difficult. The matrix pencil method of information theory is used to demonstrate that the broadening of a signal below noise and shift of its frequency detuning interfere with reliable signal detection for SNR ≤ 0.05. An analog of the Bohr complementarity principle is used to analyze the NQR detector. In addition, performance of the NQR-mine detector used to clear of mines territories of former military actions is examined.__________Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 40–46, February, 2005.  相似文献   

17.
We report a new source of high-repetition rate and widely tunable picosecond pulses for the near infrared. A singly resonant, cw, picosecond optical parametric oscillator based on temperature-tuned LiB3O5 and synchronously pumped by 1.8 ps pulses from a self-mode-locked Ti:Sapphire laser is demonstrated. The oscillator can provide average output powers of up to 90 mW under non-critical type-I phase matching at a pulse repetition rate of 81 MHz. Without dispersion compensation, transform-limited signal pulses with 720 fs durations have been generated at 1.2 times threshold. With the available mirror set, signal tuning over 1.374–1.530 µm and idler tuning over 1.676–1.828 µm is demonstrated for a range of pump wavelengths and phase-matching temperatures. With additional mirrors, continuous tuning throughout 1–2.7 µm should be readily attainable with a single LiB3O5 crystal.  相似文献   

18.
Space processing of hf signals for the elimination of interference and fading is investigated. Working prototypes of an adaptive antenna system consisting of electric dipoles and magnetic loops are described, as are the results of full-scale experiments in the elimination of interference distributed through space and in polarization with the desired-signal source. The possibility of a increase of up to 20–30 dB in the signal-to-noise ratio, which is achieved using a compact antenna system, is demonstrated experimentally.Scientific-Industrial Enterprise Flight. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 36, No. 11, pp. 1032–1042, November, 1993.  相似文献   

19.
In this work controlled phase shift gates are implemented on a qaudrupolar system, by using non-adiabatic geometric phases. A general procedure is given, for implementing controlled phase shift gates in an ‘N’ level system. The utility of such controlled phase shift gates, is demonstrated here by implementing 3-qubit Deutsch–Jozsa algorithm on a spin-7/2 quadrupolar nucleus oriented in a liquid crystal matrix.  相似文献   

20.
We develop a level set method for the computation of multi-valued physical observables (density, velocity, energy, etc.) for the high frequency limit of symmetric hyperbolic systems in any number of space dimensions. We take two approaches to derive the method.The first one starts with a weakly coupled system of an eikonal equation for phase S and a transport equation for density ρ:
The main idea is to evolve the density near the n-dimensional bi-characteristic manifold of the eikonal (Hamiltonian–Jacobi) equation, which is identified as the common zeros of n level set functions in phase space . These level set functions are generated from solving the Liouville equation with initial data chosen to embed the phase gradient. Simultaneously, we track a new quantity f = ρ(t,x,k)|det(k)| by solving again the Liouville equation near the obtained zero level set = 0 but with initial density as initial data. The multi-valued density and higher moments are thus resolved by integrating f along the bi-characteristic manifold in the phase directions.The second one uses the high frequency limit of symmetric hyperbolic systems derived by the Wigner transform. This gives rise to Liouville equations in the phase space with measure-valued solution in its initial data. Due to the linearity of the Liouville equation we can decompose the density distribution into products of function, each of which solves the Liouville equation with L initial data on any bounded domain. It yields higher order moments such as energy and energy flux.The main advantages of these new approaches, in contrast to the standard kinetic equation approach using the Liouville equation with a Dirac measure initial data, include: (1) the Liouville equations are solved with L initial data, and a singular integral involving the Dirac-δ function is evaluated only in the post-processing step, thus avoiding oscillations and excessive numerical smearing; (2) a local level set method can be utilized to significantly reduce the computation in the phase space. These methods can be used to compute all physical observables for multi-dimensional problems.Our method applies to the wave fields corresponding to simple eigenvalues of the dispersion matrix. One such example is the wave equation, which will be studied numerically in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号