共查询到20条相似文献,搜索用时 12 毫秒
1.
Narita K Kuwabara T Sone K Shimizu K Yagi M 《The journal of physical chemistry. B》2006,110(46):23107-23114
Hybridization of [(OH(2))(terpy)Mn(mu-O)(2)Mn(terpy)(OH(2))](3+) (terpy= 2,2':6',2' '-terpyridine) (1) and mica clay yielded catalytic dioxygen (O(2)) evolution from water using a CeIV oxidant. The reaction was characterized by various spectroscopic measurements and a kinetic analysis of O(2) evolution. X-ray diffraction (XRD) data indicates the interlayer separation of mica changes upon intercalation of 1. The UV-vis diffuse reflectance (RD) and Mn K-edge X-ray absorption near-edge structure (XANES) data suggest that the oxidation state of the di-mu-oxo Mn(2) core is Mn(III)-Mn(IV), but it is not intact. In aqueous solution, the reaction of 1 with a large excess Ce(IV) oxidant led to decomposition of 1 to form MnO(4-) ion without O(2) evolution, most possibly by its disproportionation. However, MnO(4-) formation is suppressed by adsorption of 1 on clay. The maximum turnover number for O(2) evolution catalyzed by 1 adsorbed on mica and kaolin was 15 and 17, respectively, under the optimum conditions. The catalysis occurs in the interlayer space of mica or on the surface of kaolin, whereas MnO(4-) formation occurs in the liquid phase, involving local adsorption equilibria of adsorbed 1 at the interface between the clay surface and the liquid phase. The analysis of O(2) evolution activity showed that the catalysis requires cooperation of two equivalents of 1 adsorbed on clay. The second-order rate constant based on the concentration (mol g(-1)) of 1 per unit weight of clay was 2.7 +/- 0.1 mol(-1) s(-1) g for mica, which is appreciably lower than that for kaolin (23.9 +/- 0.4 mol(-1) s(-1) g). This difference can be explained by the localized adsorption of 1 on the surface for kaolin. However, the apparent turnover frequency ((kO(2))app/s(-1)) of 1 on mica was 2.2 times greater than on kaolin when the same fractional loading is compared. The higher cation exchange capacity (CEC) of mica statistically affords a shorter distance between the anionic sites to which 1 is attracted electrostatically, making the cooperative interaction between adsorbed molecules of 1 easier than that on kaolin. The higher CEC is important not only for attaining a higher loading but also for the higher catalytic activity of adsorbed 1. 相似文献
2.
J Limburg J S Vrettos H Chen J C de Paula R H Crabtree G W Brudvig 《Journal of the American Chemical Society》2001,123(3):423-430
The complex [(terpy)(H(2)O)Mn(III)(O)(2)Mn(IV)(OH(2))(terpy)](NO(3))(3) (terpy = 2,2':6,2' '-terpyridine) (1)catalyzes O(2) evolution from either KHSO(5) (potassium oxone) or NaOCl. The reactions follow Michaelis-Menten kinetics where V(max) = 2420 +/- 490 mol O(2) (mol 1)(-1) hr(-1) and K(M) = 53 +/- 5 mM for oxone ([1] = 7.5 microM), and V(max) = 6.5 +/- 0.3 mol O(2) (mol 1)(-1) hr(-1) and K(M) = 39 +/- 4 mM for hypochlorite ([1] = 70 microM), with first-order kinetics observed in 1 for both oxidants. A mechanism is proposed having a preequilibrium between 1 and HSO(5-) or OCl(-), supported by the isolation and structural characterization of [(terpy)(SO(4))Mn(IV)(O)(2)Mn(IV)(O(4)S)(terpy)] (2). Isotope-labeling studies using H(2)(18)O and KHS(16)O(5) show that O(2) evolution proceeds via an intermediate that can exchange with water, where Raman spectroscopy has been used to confirm that the active oxygen of HSO(5-) is nonexchanging (t(1/2) > 1 h). The amount of label incorporated into O(2) is dependent on the relative concentrations of oxone and 1. (32)O(2):(34)O(2):(36)O(2) is 91.9 +/- 0.3:7.6 +/- 0.3:0.51 +/- 0.48, when [HSO(5-)] = 50 mM (0.5 mM 1), and 49 +/- 21:39 +/- 15:12 +/- 6 when [HSO(5-)] = 15 mM (0.75 mM 1). The rate-limiting step of O(2) evolution is proposed to be formation of a formally Mn(V)=O moiety which could then competitively react with either oxone or water/hydroxide to produce O(2). These results show that 1 serves as a functional model for photosynthetic water oxidation. 相似文献
3.
Kimoto A Yamauchi K Yoshida M Masaoka S Sakai K 《Chemical communications (Cambridge, England)》2012,48(2):239-241
The Ru(V)==O species and other intermediates in O(2) evolution from water catalyzed by [Ru(terpy)(bpy)(OH(2))](2+) were spectrophotometrically characterized, and the spectral components observed were identified based on the TD-DFT calculations. Moreover, important insights into the rapid paths after the RDS were given by the DFT studies. 相似文献
4.
The {Fe2(mu-OH)2(mu-O2CR)}3+ and {Fe2(mu-O)(mu-O2CR)}3+ cores of the carboxylate-bridged diiron(III) centers in the enzyme active sites were reproduced by small molecule model complexes that were prepared through direct oxygenation of the mononuclear iron(II) complexes. Upon oxygenation of [Fe(O2CArTol)2(Hdmpz)2], where -O2CArTol is 2,6-di(p-tolyl)benzoate and Hdmpz is 3,5-dimethylpyrazole, [Fe2(mu-OH)2(mu-O2CArTol)(O2CArTol)3(OH2)(Hdmpz)2] was generated and characterized to share close physical properties with sMMOHox, including delta = 0.45 (2) mm/s, DeltaEQ = 1.21 (2) mm/s, and J = -7.2 (2) cm-1. The compound [Fe2(mu-O)(mu-O2CAr4-FPh)(O2CAr4-FPh)3(Hdmpz)3], where -O2CAr4-FPh is 2,6-di(4-fluorophenyl)benzoate, with delta = 0.51 (2) mm/s, DeltaEQ = 1.26 (2) mm/s, and J = -117.4 (1) cm-1, was isolated as the oxygenation product of [Fe(O2CAr4-FPh)2(Hdmpz)2]. 相似文献
5.
Chen H Tagore R Olack G Vrettos JS Weng TC Penner-Hahn J Crabtree RH Brudvig GW 《Inorganic chemistry》2007,46(1):34-43
[MnIII/IV2(-O)2(terpy)2(OH2)2](NO3)3 (1, where terpy = 2,2':6'2' '-terpyridine) + oxone (2KHSO5 x KHSO4 x K2SO4) provides a functional model system for the oxygen-evolving complex of photosystem II that is based on a structurally relevant Mn-(-O)2-Mn moiety (Limburg, J.; et al. J. Am. Chem. Soc. 2001, 123, 423-430). In this study, electron paramagnetic resonance, ultraviolet-visible spectroscopy, electrospray ionization mass spectrometry, X-ray absorption spectroscopy, and gas-phase stable isotope ratio mass spectrometry were utilized to identify the title compounds in the catalytic solution. We find that (a) O2 evolution does not proceed through heterogeneous catalysis by MnO2 or other decomposition products, that (b) O atoms from solvent water are incorporated into the evolved O2 to a significant extent but not into oxone, that (c) the MnIII/IV2 title compound 1 is an active precatalyst in the catalytic cycle of O2 evolution with oxone, while the MnIV/IV2 oxidation state is not, and that (d) the isotope label incorporation in the evolved O2, together with points a-c above, is consistent with a mechanism involving competing reactions of oxone and water with a "MnV=O" intermediate in the O-O bond-forming step. 相似文献
6.
Slep LD Mijovilovich A Meyer-Klaucke W Weyhermüller T Bill E Bothe E Neese F Wieghardt K 《Journal of the American Chemical Society》2003,125(50):15554-15570
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. M?ssbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). M?ssbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)). 相似文献
7.
The 3 MnIV title compound has been prepared and characterized by X-ray crystallography and magnetochemistry; the complex contains a [Mn(mu-O)2Mn(mu-O)2Mn]4+ core and possesses an S = 3/2 ground state. 相似文献
8.
9.
The tetranuclear manganese complex [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) (1; terpy = 2,2':6',2″-terpyridine) gives catalytic water oxidation in aqueous solution, as determined by electrochemistry and GC-MS. Complex 1 also exhibits catalytic water oxidation when adsorbed on kaolin clay, with Ce(IV) as the primary oxidant. The redox intermediates of complex 1 adsorbed on kaolin clay upon addition of Ce(IV) have been characterized by using diffuse reflectance UV/visible and EPR spectroscopy. One of the products in the reaction on kaolin clay is Mn(III), as determined by parallel-mode EPR spectroscopic studies. When 1 is oxidized in aqueous solution with Ce(IV), the reaction intermediates are unstable and decompose to form Mn(II), detected by EPR spectroscopy, and MnO(2). DFT calculations show that the oxygen in the mono-μ-oxo bridge, rather than Mn(IV), is oxidized after an electron is removed from the Mn(IV,IV,IV,IV) tetramer. On the basis of the calculations, the formation of O(2) is proposed to occur by reaction of water with an electrophilic manganese-bound oxyl radical species, (?)O-Mn(2)(IV/IV), produced during the oxidation of the tetramer. This study demonstrates that [Mn(IV)(4)O(5)(terpy)(4)(H(2)O)(2)](ClO(4))(6) may be relevant for understanding the role of the Mn tetramer in photosystem II. 相似文献
10.
11.
Baffert C Romain S Richardot A Leprêtre JC Lefebvre B Deronzier A Collomb MN 《Journal of the American Chemical Society》2005,127(39):13694-13704
To examine the real ability of the binuclear di-mu-oxo complex [Mn2(III,IV)O2(terpy)2(H2O)2]3+ (2) to act as a catalyst for water oxidation, we have investigated in detail its redox properties and that of its mononuclear precursor complex [Mn(II)(terpy)2]2+ (1) in aqueous solution. It appears that electrochemical oxidation of 1 allows the quantitative formation of 2 and, most importantly, that electrochemical oxidation of 2 quantitatively yields the stable tetranuclear Mn(IV) complex, [Mn4(IV)O5(terpy)4(H2O)2]6+ (4), having a linear mono-mu-oxo{Mn2(mu-oxo)2}2 core. Therefore, these results show that the electrochemical oxidation of 2 in aqueous solution is only a one-electron process leading to 4 via the formation of a mono-mu-oxo bridge between two oxidized [Mn2(IV,IV)O2(terpy)2(H2O)2]4+ species. 4 is also quantitatively formed by dissolution of the binuclear complex [Mn2(IV,IV)O2(terpy)2(SO4)2] (3) in aqueous solutions. Evidence of this work is that 4 is stable in aqueous solutions, and even if it is a good synthetic analogue of the "dimers-of-dimers" model compound of the OEC in PSII, this complex is not able to oxidize water. As a consequence, since 4 results from an one-electron oxidation of 2, 2 cannot act as an efficient homogeneous electrocatalyst for water oxidation. This work demonstrates that a simple oxidation of 2 cannot produce molecular oxygen without the help of an oxygen donor. 相似文献
12.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter. 相似文献
13.
Ting‐Ting Wang Ji‐Min Xie Prof. Dr. Chang‐Kun Xia Yun‐Long Wu Jun‐Jie Jing 《无机化学与普通化学杂志》2010,636(8):1580-1584
Two manganese(III)‐dicyanamide compounds, [Mn(5‐Brsalen)(dca)] · CH3OH ( 1 ) and [Mn(3‐Meosalphen)(dca)(H2O)] ( 2 ) (dca = dicyanamide anion, [N(CN)2]–), were synthesized and characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray structure analysis, and cyclic voltammetry. The structure of complex 1 is an infinite zigzag chain of hexacoordinate MnIII ions, in which the adjacent manganese atoms are connected by dca in μ1,5‐bridging mode. The molecular structure of complex 2 consists of a hexacoordinate MnIII atom, which generates a slightly distorted octahedral arrangement, and a dimer structure is formed by intermolecular hydrogen bonding interactions. The electrochemical properties of the two complexes were measured by cyclic voltammetry. 相似文献
14.
María I. Arriortua Roberto Cortés José L. Mesa Luis Lezama Teófilo Rojo Gerard Villeneuve 《Transition Metal Chemistry》1988,13(5):371-374
Summary The crystal structure of the dimeric [{Ni(C15H11N3)(NCO)(H2O)}2](PF6)2 has been determined by x-ray diffraction methods. Crystal data are as follows: P 1,a=11.904(4) Å,b=10.392(4) Å,c=8.531(3) Å, =111.87(2)o, =90.61(3)o, =107.37(5)o, U=926.7(4) Å3, Z=2, Dm=1.77(2), Dx=1.78 g. cm–3, (Mo-K)=12.1 cm–1, F(000)=494. Least-squares refinement of 1230 reflections with I1.5(1) gave a final R =0.035 (R=0.038). The structure is formed by cationic [{Ni(C15H11N3)(NCO)(H2O)}2]2+ and anionic PF
6
–
units, linked through hydrogen bonds between the water molecule and the hexafluorophosphate ion. The resulting coordination geometry around each nickel(II) ion is ferragonally elongated octahedral. The N-bridging cyanate groups occupy simultaneously an equatorial position in the coordination sphere of one of the nickel atoms and an axial position in the other. The remaining axial positions are occupied by the water molecules. Powder susceptibility data, between 2.0 and 300 K, show the existence of ferromagnetic exchange between nickel centres. The magnetic parameters are J/K=6.6K, D/K =–17.6 K, zJ/K=0.57 and g-2.21. 相似文献
15.
CA Thuesen KS Pedersen M Schau-Magnussen M Evangelisti J Vibenholt S Piligkos H Weihe J Bendix 《Dalton transactions (Cambridge, England : 2003)》2012,41(37):11284-11292
The trifluorido complex mer-[CrF(3)(py)(3)] (py = pyridine) reacts with 1 equiv. of [Ln(hfac)(3)(H(2)O)(2)] and depending on the solvent forms the tetranuclear clusters [Cr(2)Ln(2)(μ-F)(4)(μ-OH)(2)(py)(4)(hfac)(6)], 1Ln, and [Cr(2)Ln(2)(μ-F)(4)F(2)(py)(6)(hfac)(6)], 2Ln, in acetonitrile and 1,2-dichloroethane, respectively (Ln = Y, Gd, Tb, Dy, Ho, and Er; hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone). Reaction with [Dy(hfac)(3)(H(2)O)(2)] in dichloromethane produces the dinuclear cluster [CrDy(μ-F)F(OH(2))(py)(3)(hfac)(4)], 3Dy. All the clusters feature fluoride bridges between the chromium(iii) and lanthanide(iii) centres. Fits of susceptibility data for 1Gd and 2Gd reveal the fluoride-mediated chromium(iii)-lanthanide(iii) exchange interactions to be 0.43(5) cm(-1) and 0.57(7) cm(-1), respectively (in the convention). Heat capacity measurements on 2Gd reveal a moderate magneto-caloric effect (MCE) reaching -ΔS(m)(T) = 11.4 J kg(-1) K(-1) for ΔB(0) = 9 T → 0 T at T = 4.1 K. Out-of-phase alternating-current susceptibility (χ') signals are observed for 1Dy, 2Dy and 2Tb, demonstrating slow relaxation of the magnetization. 相似文献
16.
17.
Water exchange from the oxo-centered rhodium(III) trimer, [Rh3(mu3-O)(mu-O2CCH3)6(OH2)3]+, was investigated using variable-temperature (272.8-281.6 K) and variable-pressure (0.1-200 MPa) 17O NMR spectroscopy. The exchange reaction was also monitored at three different acidities (pH = 1.8, 2.9, and 5.7) in which the molecule is in the fully protonated form (pKa = 8.3 (+/-0.2), I = 0.1 M, T = 298 K). The temperature dependence of the pseudo-first-order rate coefficient for water exchange yields the following kinetic parameters: k(ex)298 = 5 x 10(-3) s(-1), deltaH(double dagger) = 99 (+/-3) kJ mol(-1), and deltaS(double dagger) = 43 (+/-10) J K(-1) mol(-1). The enhanced reactivity of the terminal waters, some 6 orders of magnitude faster than water exchange from Rh(H2O)6(3+), is likely due to trans-labilization from the central oxide ion. Also, another contributing factor is the low average charge on the metal ions (+0.33/Rh). Variation of reaction rate with pressure results in a deltaV(double dagger) = +5.3 (+/-0.4) cm3 mol(-1), indicative of an interchange-dissociative (I(d)) pathway. These results are consistent with those published by Sasaki et al. who proposed that water substitution from rhodium(III) and ruthenium(III) oxo-centered trimers follows a dissociative mechanism based on highly positive activation parameters (Sasaki, Y.; Nagasawa, A.; Tokiwa-Yamanoto, A.; Ito, T. Inorg. Chim. Acta 1993, 212, 175-182). 相似文献
18.
The net six-electron oxidation of aniline to nitrobenzene or azoxybenzene by cis-[Ru(IV)(bpy)(2)(py)(O)](2+) (bpy is 2,2'-bipyridine; py is pyridine) occurs in a series of discrete stages. In the first, initial two-electron oxidation is followed by competition between oxidative coupling with aniline to give 1,2-diphenylhydrazine and capture by H(2)O to give N-phenylhydroxylamine. The kinetics are first order in aniline and first order in Ru(IV) with k(25.1 degrees C, CH(3)CN) = (2.05 +/- 0.18) x 10(2) M(-1) s(-1) (DeltaH(++) = 5.0 +/- 0.7 kcal/mol; DeltaS(++) = -31 +/- 2 eu). On the basis of competition experiments, k(H)2(O)/k(D)2(O) kinetic isotope effects, and the results of an (18)O labeling study, it is concluded that the initial redox step probably involves proton-coupled two-electron transfer from aniline to cis-[Ru(IV)(bpy)(2)(py)(O)](2+) (Ru(IV)=O(2+)). The product is an intermediate nitrene (PhN) or a protonated nitrene (PhNH(+)) which is captured by water to give PhNHOH or aniline to give PhNHNHPh. In the following stages, PhNHOH, once formed, is rapidly oxidized by Ru(IV)=O(2+) to PhNO and PhNHNHPh to PhN=NPh. The rate laws for these reactions are first order in Ru(IV)=O(2+) and first order in reductant with k(14.4 degrees C, H(2)O/(CH(3))(2)CO) = (4.35 +/- 0.24) x 10(6) M(-1) s(-1) for PhNHOH and k(25.1 degrees C, CH(3)CN) = (1.79 +/- 0.14) x 10(4) M(-1) s(-1) for PhNHNHPh. In the final stages of the six-electron reactions, PhNO is oxidized to PhNO(2) and PhN=NPh to PhN(O)=NPh. The oxidation of PhNO is first order in PhNO and in Ru(IV)=O(2+) with k(25.1 degrees C, CH(3)CN) = 6.32 +/- 0.33 M(-1) s(-1) (DeltaH(++) = 4.6 +/- 0.8 kcal/mol; DeltaS(++) = -39 +/- 3 eu). The reaction occurs by O-atom transfer, as shown by an (18)O labeling study and by the appearance of a nitrobenzene-bound intermediate at low temperature. 相似文献
19.
Okamoto K Miyawaki J Nagai K Matsumura D Nojima A Yokoyama T Kondoh H Ohta T 《Inorganic chemistry》2003,42(26):8682-8689
The oxidation-induced structural change of a water-oxidizing diruthenium complex, [(bpy)(2)(H(2)O)Ru(III)(micro-O)Ru(III)(OH(2))(bpy)(2)](4+) (bpy = 2,2'-bipyridine), was investigated by means of X-ray absorption spectroscopy. Ru K-edge XANES (X-ray absorption near-edge structure) spectra from the acidic solution and solid precipitates obtained by oxidation showed that the absorption edge shifts toward higher energy with a preedge feature slightly more enhanced than those of the lower oxidation states. This indicates that the higher oxidation state has a lower symmetry due to shortening of the Ru-O bonds that originated from the water ligands. The EXAFS (extended X-ray absorption fine structure) spectra were similar to those of the lower oxidation states, whose analysis revealed the existence of short Ru-O double bonds and an almost linear Ru-O-Ru angle (169 +/- 2 degrees ). Ab initio EXAFS simulations for several possible structural models suggest that the dimeric structure is maintained during the water oxidation reaction. 相似文献
20.
A dissymmetric 1,10-phenanthroline chelate (N-phen-S) bearing two polyether chains terminated by two monodentate ligands of the benzonitrile (N) and dialkylesulfoxide (S) types was synthesized, characterized, and coordinated to ruthenium. The corresponding Ru(terpy)(N-phen-S)2+ complexes (terpy = 4'-(3,5-ditertiobutylphenyl)-2,2';6',2' '-terpyridine) were fully characterized as being two coordination isomers of the scorpionate type with one of the two tails occupying the sixth position on the coordination sphere. Photoexpulsion of the coordinated tail led to opening of the ruthena-macrocycle and subsequent rearrangement of the bidentate chelate. This rearrangement consisted of a 90 degrees rotation of the phenanthroline around the ruthenium atom. Selective irradiation of one isomer in a mixture of the two was undertaken using band-pass filters; this resulted in an enrichment of the nonirradiated isomer in the mixture. Thermal back-coordination of the tail was investigated in the dark. It took place quantitatively from the corresponding ruthenium chloride complex by trapping of the anion with silver salts. 相似文献