首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A weakly nonlinear model is proposed for multimode Kelvin-Helmholtz instability. The second-order mode coupling formula for Kelvin-Helmholtz instability in two-dimensional incompressible fluid is presented by expanding the perturbation velocity potential to second order. It is found that there is an important resonance in the course of the sum frequency mode coupling but the difference frequency mode coupling does not have. This resonance makes the sum frequency mode coupling process relatively complex. The sum frequency mode coupling is strongly dependent on time especially when the density of the two fluids is adjacent and the difference frequency mode coupling is not.  相似文献   

2.
A weakly nonlinear model is proposed for the Kelvin-Helmholtz instability in two-dimensional incompressible fluids by expanding the perturbation velocity potential to third order. The third-order harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The weakly nonlinear results are supported by numerical simulations. Density and resonance effects exist in the development of mode coupling.  相似文献   

3.
This paper studies the phase effect in mode coupling of Kelvin-Helmholtzinstability in two-dimensional incompressible fluid. It is found that thereis an important growth phenomenon of every mode in the mode couplingprocess. The growth changes periodically with phase difference and in thecondition of our simulation the period is about 0.7π. The periodcharacteristic is apparent in all stage of the mode coupling process,especially in the relatively later stage.  相似文献   

4.
Hong-Hao Dai 《中国物理 B》2022,31(12):120401-120401
We have derived the analytical formulas for the Kelvin-Helmholtz instability (KHI) of two superposed finite-thickness fluid layers with the magnetic field effect into consideration. The linear growth rate of KHI will be reduced when the thickness of the fluid with large density is decreased or the thickness of fluid with small density is increased. When the thickness and the magnetic field act together on the KHI, the effect of thickness is more obvious when the magnetic field intensity is weak. The magnetic field transition layer destabilizes (enforces) the KHI, especially in the case of small thickness of the magnetic field transition layer. When considering the effect of magnetic field, the linear growth rate of KHI always decreases after reaching the maximum with the increase of total thickness. The stronger the magnetic field intensity is, the more obvious the growth rate decreases with the total thickness. Thus, it should be included in applications where the effect of fluid thickness on the KHI cannot be ignored, such as in double-cone ignition scheme for inertial confinement fusion.  相似文献   

5.
使用局部Steger-Warming通量分裂方法,利用NND有限差分格式求解守恒型流体力学方程组,实现对Kelvin-Helmholtz不稳定性的数值模拟.数值模拟给出的线性增长率与线性稳定性分析给出的结果相符合,得到锐利的界面变形图像.  相似文献   

6.
The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.  相似文献   

7.
The recently developed discrete Boltzmann method(DBM), which is based on a set of uniform linear evolution equations and has high parallel efficiency, is employed to investigate the dynamic nonequilibrium process of Kelvin-Helmholtz instability(KHI). It is found that, the relaxation time always strengthens the global nonequilibrium(GNE), entropy of mixing, and free enthalpy of mixing. Specifically, as a combined effect of physical gradients and nonequilibrium area, the GNE intensity first increases but decreases during the whole life-cycle of KHI. The growth rate of entropy of mixing shows firstly reducing, then increasing, and finally decreasing trends during the KHI process. The trend of the free enthalpy of mixing is opposite to that of the entropy of mixing. Detailed explanations are:(i) Initially,binary diffusion smooths quickly the sharp gradient in the mole fraction, which results in a steeply decreasing mixing rate.(ii) Afterwards, the mixing process is significantly promoted by the increasing length of material interface in the evolution of the KHI.(iii) As physical gradients are smoothed due to the binary diffusion and dissipation, the mixing rate reduces and approaches zero in the final stage. Moreover, with the increasing Atwood number, the global strength of viscous stresses on the heavy(light) medium reduces(increases), because the heavy(light) medium has a relatively small(large) velocity change. Furthermore, for a smaller Atwood number, the peaks of nonequilibrium manifestations emerge earlier, the entropy of mixing and free enthalpy of mixing change faster, because the KHI initiates a higher growth rate.  相似文献   

8.
The instability of small but finite amplitude waves propagating at the interface of two layers of highly conducting incompressible fluids in relative motion in presence of external uniform magnetic field is studied. Using the method of multiple scales nonlinear evolution equations are derived for both linearly stable and marginally stable cases. It is found that in the linearly stable case both the modes are modulationally unstable. The nonlinear cut-off wavenumbers are determined.  相似文献   

9.
This paper is concerned with the incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. It is rigorously shown that the weak solutions of the compressible magnetohydrodynamic equations converge to the strong solution of the viscous or inviscid incompressible magnetohydrodynamic equations as long as the latter exists both for the well-prepared initial data and general initial data. Furthermore, the convergence rates are also obtained in the case of the well-prepared initial data.  相似文献   

10.
基于FTM(Front Tracking Method)对倾斜壁面下的二维不混溶、不可压缩流体的Kelvin-Helmholtz(K-H)不稳定性进行数值模拟.研究壁面倾角,速度梯度层厚度以及理查德森数对K-H不稳定性发展的影响.研究表明,壁面倾角越大,K-H不稳定性发展越快,卷起的液体越多;倾斜壁面下速度梯度层厚度的增加对界面卷起表现出抑制作用.理查德森数重力项越大,界面卷起越缓慢,而理查德森数表面张力项对界面卷起高度的影响较小.  相似文献   

11.
胡湘渝 《气体物理》2016,1(3):12-18
采用低耗散WENO(weighted essential non-oscillatory)格式及锐界面方法模拟可压缩Kelvin-Helmholtz不稳定性问题.由于物质界面被描述成一种接触间断, 该方法可精确求解切向速度间断.基于优化模板对原始光滑指标进行正规化后, 得到一种低耗散WENO格式.修正后的方法显著降低了普通流动区域的过衰减问题, 保持了良好的激波捕捉性能, 并可获得与混合格式相当的求解精度.不同于以往求解单一流体或易混界面时, 通过初始设定有限宽度的剪切层或快速数值耗散以抑制高波数模态, 该方法允许高波数扰动的发展.计算结果表明, 高波数扰动展现出与以往理想Kelvin-Helmholtz不稳定性问题数值模拟或线化理论结果不同的特征, 但与有限厚度的剪切层结果相符.   相似文献   

12.
A weakly nonlinear model is established for incompressible Rayleigh—Taylor instability with surface tension. The temporal evolution of a perturbed interface is explored analytically via the third-order solution. The dependence of the first three harmonics on the surface tension is discussed. The amplitudes of bubble and spike are greatly affected by surface tension. The saturation amplitude of the fundamental mode versus the Atwood number A is investigated with surface tension into consideration. The saturation amplitude decreases with increasing A. Surface tension exhibits a stabilizing phenomenon. It is shown that the asymmetrical development of the perturbed interface occurs much later for large surface tension effect.  相似文献   

13.
14.
15.
A theoretical study is made on the amplification mechanism of electrostatic Bernstein mode wave in presence of kinetic Alfven wave turbulence in a magnetized plasma on the basis of plasma-maser interaction. It is shown that a test high frequency electrostativ Bernstein mode wave is unstable in the presence of low frequency kinetic Alfven wave turbulence. The growth rate of the Bernstein wave vanishes only in an unmagnetized plasma. Because of the universal existence of the kinetic Alfven waves in large scale plasmas, the results have potential importance in space and astrophysical radiation processes.  相似文献   

16.
The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].  相似文献   

17.
18.
19.
Numerical investigation is made on the effect of streaky structures in transition by inviscid linear disturbance equation with temporal mode. Several disturbances with different streamwise wave numbers were induced, and the evolutions with time step were received. It suggests that the exponential growth and periodic variation of the waves are in existence. As the streamwise wave number increases, the disturbance growth rate begins by increasing, reaches a maximum at around α=0.4 with a disturbance frequency of 0.2186 + 0.001457i, and then decreases. Furthermore, the eigenfunctions of pressure disturbance are plotted.  相似文献   

20.
Quantum effects on Rayleigh-Taylor instability of a stratified incompressible plasmas layer under the influence of vertical magnetic field are investigated. The solutions of the linearized equations of motion together with the boundary conditions lead to deriving the relation between square normalized growth rate and square normalized wave number in two algebraic equations and are numerically analyzed. In the case of the real solution of these two equations, they can be combined to generate a single equation. The results show that the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号